学年

教科

質問の種類

数学 高校生

【複素数の極形式】この角度じゃ値わからないのにどうやったらわかるのですか?

Approach は 0≦02 p.76 するとき,点2を を求めよ。 教p.79 例 に当てはま π sin 7 とすると -, さらに0から 二点Oを中心とし 点である。 356 複素数z=s (cosd+isind)について,えを極形式で表せ。 TC 12 357 21 √2 cos- 1/2 cos To tisin- TU 素数を極形式で表し, 口 (1) Z1Z2 口 (2) 口 (2) 358 z = -1+i, z2=√3+iのとき. 次の問いに答えよ。 21 ロ (1) をa+biの形で表せ。 22 Z1を極形式で表せ。 22 (12)の結果を用いて, 358. (1) 174 数学 C 第5章 複素数平面 (4/2₁ = √/2 (cos(-2) + sin(-12)} Z₁=√2{cos(- 12 であるから, 12/ 22=2 cos artisinox) のとき、次の複 3 π Zizi=2√2(cos(-1/2+1/n) +isin (12/12/2x)} + √2 2 4 さらにa+biの形で表せ。 21 □ (3) 212 22 COS COS COS (31) より, COS π 4 2 = 2/2 (cos+isin) 3 = 2√2 (-1/2+1/3)= -√2+√61 21 -1+i_(-1+i)(√3-i) Z2 √3+i 2:=2(cos+isin) であるから, Z1 √2 Z2 2 √2 2 nisin 1/27) 12 4 (2) 1, z2を極形式で表すと, 21= √2 (cos³x+isin³)=√√a² +4² k にして に 7 12 3 COS 7 COS 12 ™ sin 12 ™ の値をそれぞれ求めよ。 cos- 3 π, sin- T= ・+ 7 12 3 ・TC 7 12 3 7 (cos2x+isin x)=1-√3, 1+√3 4 7 12 (√3+i)(√3-i) -√3+1+(1+√3) i 3+1 1-√3_1+√3; 4 cos2x+isin = √2-√6 + √2+√6₁ √2-√6√2+√6; 7 12 4 4 苔) 7 /2-√6 4 T= 3 □ 4 Z1Z2 ミ ルー - は実数であるから, 7 sin 12 359. (1) (cos+isin)2=i(√3+i) + T= p.76 例7 p.78例8 √2+√6 4 わ 第5章 複素数z=r(cosf+i について は いて対称であるから z=r{cos(0) +isin| 分母・分子に3 -1+レ y 0 √2 2 7 6 0 √3+i v3 dが実数のとき のことが成り立つ。 a+bi=c+dia=c 360. 程 の距 とし Z= αz 361. (2)

未解決 回答数: 1
数学 高校生

92. 答えは合っているのですが、(文字を具体的な数字に書き換えて解き方を考えたので)うまく記述文は書けませんでした。仮にこれが記述問題だとしたら何割くらいの得点になりますか??

R 1 減少 重要 例題 92 既約分数の和 00000 pは素数m,nは正の整数でm<nとする。mとnの間にあって, pを分母と する既約分数の総和を求めよ。 $1=1 61=-5 7+58r 指針▷既約分数の和→全体の和から整数の和を除くという方針で求める。 まず,具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 11 8 9 10 7 3'3' 3'3' (*) 解答 であり、既約分数の和は(*)の和から3と4を引くことで求められる。 このことを一般化すればよい。 gを自然数として, m<g p ① のうち、 - pn-pm-1 2 9 12 13 3, 3 pm<g<pnであるから g=pm+1,pm+2, よって 9_pm+1 pm+2 Þ þ P これらの和をS とすると これらの和を S2 とすると S2= が整数となるもの _=m+1,m+2, -< n を満たす 14 3' 3 n-m-1 2 -(m+n) S= (+ 24288 Les ass (n-1)-(m+1)+1 2 159), arc -(m+n) p S=(pn-1)-(pm+1)+1(om+1.pn-1)S=1/2"(a+1) SODUL P ...... pn-1 n-1 を求める ………, pn-1 -{(m+1)+(n-1)} 【同志社大] 1/2 (m+n){(n−m)p−(n−m)} 1/12(m+n)(n-m)(b-1) ゆえに 求める総和をSとすると, S=S-S2 であるから pn-pm-¹ (m+n)_n_m−¹(m+n) 2 2 (*)は等差数列であり、3と4は 2と5の間にある整数である。 「とんの間」であるから, 両端のとnは含まない。 < 初項 基本 89,90 pm+1 か 公差 1 等差数列。 GROER) 45.= n(a+1) mとnの間にある整数。 (全体の和) (整数の和) 523 3章 12 等差数列 委 Ja に

回答募集中 回答数: 0
数学 高校生

1枚目の11番のところのtheyと21番のthisはそれぞれ何を示しているのか教えてください。 2枚目の17番のweを示しているのは誰ですか。 3枚目の6番のsheはだれを示しているのか。 至急お願いします

Date 1. English as a ( 19 2 ) to one ( English )( 3 native English speakers ( 4 only a ( 5 English is now used more often/ 6 between ( )-(. most native speakers /tadé// )( .)/ ) of the world's English speakers. // ) speakers / 11 they 12 The English( 13 is called English as a lingua franca / 14 or ELF.// LESSON 4 than between ( 8 For example,/ 9 when business people from Japan, China, and Korea / 10 have a meeting,/ ) speakers. // 15 In using ELF,/ 16 you should speak clearly and simply.// 17 You should also ( ) on ( 18 For example, / ), / ) their business in English. // Xin this ( 20|( 21 This is not a problem/ 22 because we can understand both.// )(ELF) 23 However, / 24 if you say /dadér/ or /tatér/, / 25 no one will understand what you say.// 26 This example shows us/ ) some usually say /tadáw/// →このような例とは? 27 that consonants are more important than ( today as DL Part 3 どのような状況? ). // ) 11 ネ法 Japanese 国際共通語としての英語(ELF) ある概算によると 英語母語話者[ネイティブスピーカー] は 占めるにすぎません 世界の英語話者のたった4分の1を 今では、よく英語が使われています 非母語話者[非ネイティブスピーカー] 間 のほうが 母語話者 [ネイティブスピーカー] 間よりも たとえば 日本,中国, 韓国の実業家が 会議をするとき 彼らは英語で彼らのビジネスについて話 し合います このような状況で話される英語は 国際共通語としての英語と呼ばれます またはELFと ELFを使うときは はっきりと, 簡潔に話すべきです また、子音にも注意を集中させるべきで す たとえば たいていの母語話者[ネイティブスピーカー] は todayを/tadér/ と発音します 一方で、 普段は/tadá / と言う人もいま す これは問題ではありません 私たちは両方とも理解できるので しかしながら もし/dadér/か/tatér/ と言えば あなたの言うことはだれもわからないで しょう この例は、私たちに示しています 重要であることを

未解決 回答数: 1