学年

教科

質問の種類

数学 高校生

青チャート例題38(2)(3)より2次式の解の種類について質問です。 Kの場合わけしないといけないのは分かるのですが何故(2)は実数全てにおいて異なる二つの実数解になるんですか? (3)のように>0、=0、<0で場合分けする必要はないんでしょうか? また(2)のような答えに... 続きを読む

68 88 基本 例題 38 2次方程式の解の判別 0000 (3)x2+2(k-1)x-k2+4k-3=0 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (2) 2x²-(k+2)x+k-1=0 (1) 3x²-5x+3=0 基 k p.66 指針 2次方程式 ax2+bx+c=0の解の種類は, 解を求めなくても, 判別式D の符号だけで 別できる。 異なる2つの実数解 質 公小 2次方程式の解の判別 D=0⇔重解 重解はx=- 2a D0⇔異なる2つの虚数解 解答 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は,(1)と変わらないが がkの2次式で表され,kの値による場合分けが必要となることがある。………… 与えられた2次方程式の判別式をDとすると (1) D=(-5)-4・3・3= -11<0 をも よって、異なる2つの虚数解をもつ。 つの (2) D={-(k+2)}-4・2(k-1)=k+4k+4-8(k-1) =k-4k+12=(k-2)2+8 ゆえに、すべての実数kについて よって、異なる2つの実数解をもつ。 する D>0 (3) 1/2=(k-1)^-1.(k+4k-3)=2k²-6k+4 =2(k2-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわちん <1,2 <kのとき 異なる2つの実数解 D = 0 すなわち k=1, 2 のとき 重解 D<0 すなわち 1 <k<2のとき 異なる2つの虚数解 D<0 一D>0」 CHES OF T {-(k+2)}2 の部分は, (1)2 =1なので, (+2 と書いてもよい。 1+CIDA ax2+2b'x+c=0 では D 4 α <βのとき 利用する (x-α)(x-B)>0 ⇔x<a, B<x α <βのとき (x-α)(x-B)<0 ⇒a<x<B D>0- 2 練習 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 31-12x 指

未解決 回答数: 1
数学 高校生

サの部分がわからないので解説して頂きたいです。

000076 76 sin0, cos0 の2次式の最大・最小 a, b, cは正の定数とする。 0 2 の範囲で定義された2つの関数 S(0)=(1-√3a)sin' 0 +2asincos0+ (1+√3a)cos'0g(0)=bsinc0+b について (1) S(0) を a, sin20, cos20 を用いて表すと S(0) T lasin 20+ + ウ イ と変形できる。 よって,f(8) は のとき最大値 A = [エオ (2) g (0) の最小値が0であるとき, cの値の範囲は cサである。 このとき,さらにS(0) g(8) の最大値と最小値がそれぞれ一致するならば a+ キ 0= T ■ク のとき最小値ケ コαをとる。 b = セ + ソ タ a = ス チ である。 解答 (1) f(0) 変形すると Key 1 f(0)=(1-√3a) 1-cos20 2 +2a- sin20 2 +(1+√3a)1+ cos20 Key 2 2 = asin20+√3acos20+1= a(sin20+√3 cos20) +1 =2asin(20+ /25) +1 f(8) = (sin'0+cos'0) +a2sincos0 +3 a(cos20-sin³0) と変形し 2倍角の公式 2sincos0 = sin20 cos' 0 -sin^0= cos20 を代入してもよい。 π のとき ≤20+ 3 13 4 S より √3 2 α > 0 より ≤ sin(20+) 1 -√3a+1≦2asin (20+4 +1 ≦ 2a+10 よって, f(8) は 1 02 π π 20+ すなわち 0= 33 = 243 のとき最大値 24 +1 12 π 20+ (2)g(8)=0 のとき 60 より sinc0 = -1 0≧0 の範囲で sinc0 = -1 となる最小の8の値。 は すなわち 0 のとき 最小値1-3a 2 D bsinco = -b 3 c>0より, clo= となり 3 8₁ = 2 となるから 12c <10+(-1)=( よって,OSTの範囲で g (8) の最小値が0 となるとき c0 であるから, 3π 2c より c≥ 3 2 f(8) g (0) の最大値と最小値がそれぞれ一致するとき 2α+1=26 かつ 1-√34=0 これを解いて a= √3 3+2√3 b = 3 6 √3 3 三角関数 ( 最大値は (2)=6(sin+1) +1 = 26 攻略のカギ! Key 1 psin0 + gsincosd+rcos'0 は, sin 20, cos20 で表せ sind と costの2次式 f(0) = psin'0+gsindcosd+rcos' の最大・最小は, 2倍角の公式から得られ る下の3つの等式を利用して, f(0) を sin20 と cos20 の式で表してから、 合成して求める。 sin20 sincost= 2 sin² = 1-cos20 2 1+cos20 cos2 0 = 2 2 asin + bcos0 は,rsin (0+α)の形に合成せよ 35 (p.149)

回答募集中 回答数: 0
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

(2)の問題で平方完成をする所までできるのですが、 最小値の求め方とその時のaの値の求め方が分からないです💦

令和6年度 夏期補習 数学(標準) チャレンジ演習② 次の問題について, 太郎さんと花子さんが会話している。 会話文を読んで以下の問いに答 えよ。 [問題] 実数 αに対し, f(x)=x2-2(3a²+5a)x+18a +30a' + 49a2+16 とおく。 αが実数全体を動くとき 2次関数y=f(x) のグラフの頂点のy座標の最小値 を求めよ。 (1) 太郎: 計算すると ア 2+ イ ウ a, 4 la^+ エオ a2+カキが頂点 の座標だとわかったよ。 花子: 頂点の座標が4次式だよ。 どうやって最小値を求めればいいんだろう。 太郎: t=ax とおけば頂点のy座標は2次式になるから,解けるはずだよ。 花子:本当だ。 ウエオ+ カキについて考えればいいんだね。 太郎: 平方完成してみると最小値は0になる(A)ことが分かるね。 花子 : 私は違う答えになったけど・・・。 ~ カキに当てはまる数を答えよ。 (2) 太郎さんの下線部(A) の発言は,誤りである。 正しい最小値はクケであり,その ときのαの値は コ である。 (3)(i) 次の①~③の関数のうち, 下線部(X)のように置きかえることで 太郎さん・花子さんと同様の方法で頂点のy座標をtの整式で表せるものを1つ選 なお,そのような関数は複数あるが解答は1つでよい。 サ © y= −x²+2a²x−4a²+8 ① y=2x2+8ax+5a+2a +4 ② y=x2-2ax+3a-a3+2 ③ y=x2-2ax-a-a2-3 (ii) サで選んだものについて、頂点のy座標の最小値を次の①~⑦のうち 1つ選べ。ただし,最小値がない場合は ⑦を選べ。 0 0 0 1 ② 2 ②③ 3 4465 60

回答募集中 回答数: 0