数学
高校生

サの部分がわからないので解説して頂きたいです。

000076 76 sin0, cos0 の2次式の最大・最小 a, b, cは正の定数とする。 0 2 の範囲で定義された2つの関数 S(0)=(1-√3a)sin' 0 +2asincos0+ (1+√3a)cos'0g(0)=bsinc0+b について (1) S(0) を a, sin20, cos20 を用いて表すと S(0) T lasin 20+ + ウ イ と変形できる。 よって,f(8) は のとき最大値 A = [エオ (2) g (0) の最小値が0であるとき, cの値の範囲は cサである。 このとき,さらにS(0) g(8) の最大値と最小値がそれぞれ一致するならば a+ キ 0= T ■ク のとき最小値ケ コαをとる。 b = セ + ソ タ a = ス チ である。 解答 (1) f(0) 変形すると Key 1 f(0)=(1-√3a) 1-cos20 2 +2a- sin20 2 +(1+√3a)1+ cos20 Key 2 2 = asin20+√3acos20+1= a(sin20+√3 cos20) +1 =2asin(20+ /25) +1 f(8) = (sin'0+cos'0) +a2sincos0 +3 a(cos20-sin³0) と変形し 2倍角の公式 2sincos0 = sin20 cos' 0 -sin^0= cos20 を代入してもよい。 π のとき ≤20+ 3 13 4 S より √3 2 α > 0 より ≤ sin(20+) 1 -√3a+1≦2asin (20+4 +1 ≦ 2a+10 よって, f(8) は 1 02 π π 20+ すなわち 0= 33 = 243 のとき最大値 24 +1 12 π 20+ (2)g(8)=0 のとき 60 より sinc0 = -1 0≧0 の範囲で sinc0 = -1 となる最小の8の値。 は すなわち 0 のとき 最小値1-3a 2 D bsinco = -b 3 c>0より, clo= となり 3 8₁ = 2 となるから 12c <10+(-1)=( よって,OSTの範囲で g (8) の最小値が0 となるとき c0 であるから, 3π 2c より c≥ 3 2 f(8) g (0) の最大値と最小値がそれぞれ一致するとき 2α+1=26 かつ 1-√34=0 これを解いて a= √3 3+2√3 b = 3 6 √3 3 三角関数 ( 最大値は (2)=6(sin+1) +1 = 26 攻略のカギ! Key 1 psin0 + gsincosd+rcos'0 は, sin 20, cos20 で表せ sind と costの2次式 f(0) = psin'0+gsindcosd+rcos' の最大・最小は, 2倍角の公式から得られ る下の3つの等式を利用して, f(0) を sin20 と cos20 の式で表してから、 合成して求める。 sin20 sincost= 2 sin² = 1-cos20 2 1+cos20 cos2 0 = 2 2 asin + bcos0 は,rsin (0+α)の形に合成せよ 35 (p.149)

回答

まだ回答がありません。

疑問は解決しましたか?