学年

教科

質問の種類

数学 高校生

(2)の解説がよく分かりません。変形から先を教えて頂きたいです!

〇和が -) 数列の 例題 310 漸化式と確率 (3) 数直線上を原点から右 (正の向き) に硬貨を投げて進む。 表が出れば 1 進み, 裏が出れば2進むものとする。 このようにして, ちょうど点nに到 達する確率をpm で表す. ただし, nは自然数とする. ( (1) 3以上のnについて, n と D-1, D-2 との関係式を求めよ. (2)≧3) を求めよ. 48305 ++ ■解答 (1) 点nに到達するのは, 点 (n-1) に到達して表 が出る場合か、点 (n-2) に到達して裏が出る場 immi mm 合である。よって, n≧3のとき, 考え方 (1) 点nに到達するのは、次の2つの場合が考えられる. (ii) (i) (n-1)に到達して、 表が出る. imm (ii) (-2)に到達して, 裏が出る. (大豆北) 1 (2) pn=12pn-1+1pn-2 を変形して, Focus P₁= G-LAL 初項 1 pn=Pn-1 • 2 + pn-2 • 1² = 12 Pn-1 + ½ pr-: 2 1 A-1293847 12/23 2' Pnt. +/1/2.pn-2 3 p2= だから,数列{bn+1-pn}は, 4 か=21,公比 = 1,公比 - 123の等比数列となり, n-1 n+1 Pn+₁-pn = 1 + (-1) ² - ¹ = (-1)^² ..1 ...... 4 2 数列 pats+ /1/2pm} は隣り合う項が等しいから Pn+₁ + 1/² Pn= P₂ + ²/² P₁ = ³ + 1/2 - 12/1 3 4 よって①,② より p=//{1-(-1/2)^2} n-2 NDOSE 3&<$7/₂2²_1 A2 pn=²3 3 43435 n-1 x2= -x+ Pn-Pn-1=--(Pn-1-Pn-2) Pn-Pn-1=(Pn-1-pn-2) 2 2 2解x=- **** (n-1)+1 n (京都大) 特性方程式 (n−2)+2n ([). 裏 → 23 (i) 点nに到達する1回前の試行に注目して漸化式を作る 3項間 100 2' n 1/12/12/01/11/1/11/11/ βとして Pn-apn-1 B(pn-1-apn-2) に2通りの代入をする. 2 は次のように考える. 1 1_1 P₂= P₁° 2 + 2 = 2 Pit. 3 1 \n +1] || =* = P₂+2 P₁ 2-1 をα, Pn+1 + 1/ Pn=p₂ + 1/2 Pn - 1 + XC 1 2 なとき 第8章

回答募集中 回答数: 0
数学 高校生

数列{Pn-1-Pn-2}の一般項を求めるのと 数列{Pn+1-Pn}の一般項を求めるのは同じことですか? (2)のPnを出す際に行き詰まりました。 お助け願います🙏

Che 例題 310 漸化式と確率 (3) BASE **** 数直線上を原点から右(正の向き) に硬貨を投げて進む.表が出れば1 進み,裏が出れば2進むものとする.このようにして,ちょうど点nに到 達する確率をpn で表す.ただし, nは自然数とする. (1) 3以上のnについて, n と D-1 D-2 との関係式を求めよ. (2) (n≧3)を求めよ. 「考え方(1)点nに到達するのは,次の2つの場合が考えられる. ¯¯¯(ii)- (i) (n-1)に到達して、 表が出る. immmmii mmmmm (ii) (-2)に到達して、裏が出る. 解答 Focus - (1) 点nに到達するのは,点(n-1) に到達して表 ++ が出る場合か,点(n-2) に到達して裏が出る場 mmmm in 合である。よって, n≧3のとき, 1_1 m-1--1/7/2 2 2 1 (2) pn=1/21pn-1+1pn-2 を変形して, Þn— --2 Pn+ 1² Pn-1=Pn-1 + 1/ Pn-2 1 2' p= Pn=Pn-1°¯ P₂=- 3 + Pn-2- -pn-1+1/2 pn-2 4 初項 pz-p= = 1,公比 RS だから,数列{bn+1-pn} は, 1/23の等比数列となり, n+1 132 n-1 Pn+1-pn=1 -(-2) ² - ¹ = (-2) ・① 数列{bn+1+1/12/0} は隣り合う項が等しいから n-2 3 Pn+1 + 1/ Pn=D₂ + 1/2 P₁ = ³ + ²2-12- p 4 よって、①,②より, p=//{1-(-1/2)^2} AABOUT βとして n-1 (n-1)+1→n m 特性方程式 (n-2)+2→n(1) 裏 3項間の漸化式 (京都大) →n x² = 1/2x + 7/12/2 -x -(i)- の2解x=- 1 を α, 2' 3 p2=pi + pn-apn-1=B(pn-1-apn-2) に2通りの代入をする. 2 は次のように考える. 1 1 1 点nに到達する1回前の試行に注目して漸化式を作る HOMENS n 1 2 22 2 \ n +1] = 1; = P₂+ = 1 1 Pn+1+₂ Pn=Pn+ 2 Pn-1 +1/201 P₁+ x DE AARDE

回答募集中 回答数: 0