学年

教科

質問の種類

数学 高校生

49.2 「異符号の解をもつ」だけの条件ということは、虚数解を持つ場合もokだから判別式>0は不要ということですよね??

82 0000 OS 基本例題 49 2次方程式の実数解の符号 $03420+ 5021 Fo 2次方程式x^2-(a-10)x+a+14 = 0 が次のような解をもつように,定数a 6-0 SARHA の範囲を定めよ。 (1) 異なる2つの正の解 指針 20 与えられた方程式の解を α, β として,次の同値関係を利用する。 異なる2つの正の解⇔D> 0 かつα+β> 0 かつαB>0 異なる2つの負の解⇔ D> 0 かつα+B< 0) かつαB>0 < (50) ⇒aß<0 ) + (d-p} Casa da < 解答 05/14-917-5 2次方程式x2(a-10)x+a+140の2つの解をα, βとし 判別式をDとする。 ここで D={-(a-10)}^-4(a+14)=α²-24a+44 =(a-2)(a-22) 10<8+ (50 80 < (2) 異符号の解 UT 解と係数の関係から (1) α=β,a> 0, β > 0 であるための条件は D> 0 かつ α+β> 0 かつ a B > 0 (a-2)(a-22)>0 α+β=a-10,αβ=a+14 ...... f(0)=a+14>0 (2) f(0)=a+14 < 0 D> 0 から ゆえに a<2,22<a ① +2=3+ +2- a+B>07²5 a-10>0 よって a>10 (*.... ② aβ> 0 から a +14> 0 よって a> -14 (3) ①, ②, ③ の共通範囲を求めて a>22 (2) α, βが異符号であるための条件は ゆえに a+14<0 よって a<-14 検討グラフの利用 2次関数f(x)=x²-(a-10)x+a+14 のグラフを利用すると, α<β として (1) D=(a-2)(a-22)>0, aβ<0 to (1) x= 軸について x= ;=a −¹0 >0, < (d)\_d> {0}\&\ a-10 2 30 (4)\AFAS a30180< a-10 2 SANFORD (12) ともに, 数学Ⅰで学 した2次関数のグラフを利用 して考えることができる。 < の検討参照。 B HAAR SOONE SOOJ 0>86T (=) 0 1 p.81 基本事項 異なる2つの正解とある から, α=βで D>0 A -14 教師 ) [αβ < 0 ならD> 0 は常に成 り立つ。 (2) 2 10 22 a f(x) OF a 0 B 00>D

解決済み 回答数: 3
数学 高校生

うかる確率の問題なのですが集合の概念を使う必要があるのでしょうか?またなぜ私の解答は間違っているのでしょうか?

高の歩動の指対試こな 2 対 め ① Z ステージ3 入試実戦編 場合の数 本ITEM からは, 「法則」 の活用がメインとなります。 まずは, 「含む」とか「ある か、一見明確な表現について考えます. ここが 「含む」=「少なくとも1つある」 →補集合を利用 6/3× 桁の自然数を作 例題33 1,2,3,4,5の5種類の数字を並べて n るとき、次の問いに禁えば何があるかじ数字を繰り返し用いてもよいとす。 (1) (2) 数字 1,2をどちらも含む自然数は何個あるか. 着眼) (3) 数字 1,2,3を全て含む自然数は何個あるか. 2/16 (2)(3)×カルノ回使う必等以 (1) 含まれる数字1の個数は, 次のうちどれかです。 全体像を視 0 1,2, 3...,n 求めやすい 求めたい olan i これを見れば、問われている 「1を含む」には多くの場合があって面倒であり, 含まない」の方が考えやすいことが一目瞭然」 ここは「補集合」 を活用しましょう。 (2) (1) で得た着眼をもとに, 「包除原理」 を適用しましょう. 2つの集合A,Bが関 する問題ですから,「カルノー図」を用いて視覚化します。 (3) こちらは3つの集合 4, B, C ですから「包除原理」+「ベン図」で.ただし... 解答作られる自然数の総数は5.… (*) (右図参照)1桁目 2桁目 また,それらから作られる3つの集合||||| A: 「1を含む」, B: 「2を含む」 C: 「3を含む」 1 を考える. 2 (1) Aの補集合は A: 「1を含まない」, i.e. 「n 桁が全て 2, 3, 4, 5」. : n(A)=4". ○これと (*) より 求める個数は n(A)=5"-n(A)=5"-4". (2) 求める個数はn (A∩B) である. ○B: 「2を含まない」, i.e. 「n 桁が全て 1,3,4,5」, ANB: 「1,2を含まない」 i.e. 「n桁が全て 3, 4, 5」. .. n(A∩B)=3". ○これらと (*) より 求める個数は n(A∩B)=5"-(4"+4-3") …① =5"-2.4"+3". 91 CHIRUPA 求めたい A A カルノー図で B 3 ¥ 5 B ・求めやすい (③3) ○求める個数は(A∩BC)である。 (2)までと同様にして n(A)=n(B)=n(C)=4". n(ANB)=n(BNC)=n(CNA)=3", ANBOT: 「1,2,3を含まない」 ie. 「n 桁が全て 4.5」 .. n(ANBNC)=2". これらと①より、求める個数は 。 n(ANBNC)=5n-(4+4+4"-3"-3"-3"+2") - 解説 ① ② で用いた公式を集合記号を用いて書くと、次のようになります。 (作られる 自然数全体の集合を表します. ① :n(A∩B)=n(Un (A∩B)- =n(U) -n (AUB) 除原理 . ド・モルガンの法則 ② : n (ANBNC) =n(U) -n (ANBNC)- 確率では事象 (U)-{n(A)+n (B)-n (A∩B)). =n(U)-n(AUBUC)L =n(U)-{n(A) + n(B)+n(C) ド モルガンの法則 ラ包除原理 -n(ANB)-n(BNC)-n(CNA)+ n(ANBNC)). ①ならまだしも,②をマジメに書くとそれだけで疲れちゃいますから、解答のよう にイキナリ数値を書きましょう. そもそも、 上記等式を“公式”として覚えて使ってい るというより, (2) のカルノー図や (3) のベン図を見ながら個数を過不足なく数えてい 注意1 ITEM 22 でも書いたように、ベン図を用いる際には、“本質的な集合”, つま るという感覚でいて欲しいものです。 り個数を求めやすい集合が輪の内側になるように描かなければなりません。 本間で求 めやすいのはA,B,C の方ですね。なので解答のような描き方になったわけです。 重要 再確認しておきましょう. ベン図を書く人にも工夫 集合の名称 2つの集合絡んだら, 名前を付けてカルノー図 3つの事象ではベン図.ただし輪の内側が求めやすいように. 注意2 本間では ITEM 6 注意でお見せした“主役脇役ダブルカウント”という有名な誤答 をする人が多いので注意すること. A TAATETER. ステージ3 入試実戦編 場合の数 95 → 5.19 類題 33 8/3× 100から999の3桁の整数の中で、 3つの位の中に2の倍数と3の倍数の両方を含むもの の数を求めよ.0=20より0は2の倍数同様に,0は3の倍数) ( 解答解答編p.11)

回答募集中 回答数: 0
数学 高校生

数2bの三次関数の問題です。 解答の[3]でx=1となる理由がわかりません。教えてください

354 0000 基本 例題 223 係数に [類立命館大] 基本 219 重要 224 aを正の定数とする。 3次関数f(x)=x-2ax²+ax 0≦x≦1における最大 値M(α) を求めよ。 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で, 極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x)のグラフは右図のよう になる(原点を通る)。 ここで, x= 満たすx (これをαとする)があることに注意が必要。 以外にf(x)=f(01/3)を よって、1/31a ( 1 / <a) カ が区間 0≦x≦1に含まれるかどうか 3' で場合分けを行う。 ★ f'(x)=3x²-4ax+a²= (3x-a)(x-a) 解答 f'(x)=0 とすると ...... X 3' a>0であるから, f(x) の増減表は次のようになる。 x= a 3 x= x = 1/3であるから a f'(x) + 0 f(x) 極大 極小 x= 10²K (x - ²)²(x-132-a)=0 4 a x-2ax2+ax- -a³=0 27 0 + x=1/3以外にf(x) = 12/10 を満たすxの値を求めると, 4 f(x)=27から [1] 1</03 すなわちa>3のとき f(x)はx=1で最大となり M(a)=f(1) ... (0) ここで,f(x)=x(x2-2ax+α²)=x(x-a)^ から(* 曲線 y=f(x) と直線 y= √(3)=3(-²a)² = 247ª², ƒ(a)=0 点において接するから、 よって, f(x) の 0≦x≦1における最大値M (α) は, 次のよ うになる。 0 (0) TEXT -a²-2a+1 - 最大 1 YA まずは,f'(x)=0 を満た すxの値を調べ、 増減表 をかく。 <a > 0 から 0< <a 3 0 1-2a 1 - a 435|34|3| a 3 で割り切れる。 このこと を利用して因数分解する とよい。 a a² 5 9 a ax 4 4 a² X= 4 -a 0 3 の 0 WA <指針_ ★の方針。 [1] は区間に極値をとる xの値を含まず, 区間の 右端で最大となる場合。 [2] 3 sas3のとき, 日本 f(x)はx=1/03 で最大となり M(a)-1(²) 練習 ③223 [3] 0<a<1 < 1 すなわち 0<a<2/2のとき, f(x)はx=1で最大となり M(a)=f(1) 以上から 0<a<20 3 <a のとき osus3のとき x=- M(α)=f(1)=α²-2a+1 - 2a 3.1 -=-²/3-a [3] y 27 a³ 43 4 11 1/30) = 12/27 となる。 a³ a²-2a+1 40 g 3 M(a)= a 47a² 3次関数の対称性の利用 場 1.34 の参考事項で紹介した性質 ③3 を用いて、f(x)=227" を満たす x = 01/3以外の の値を調べることもできる。 2つの極値をとる点を結ぶ線分の中点 (つまり, 変曲点)の x座標は MAALILL aは正の定数とする。 関数f(x)=- 2 xx [2] は区間に極大値をと るxの値を含み, 極大値 が最大値となる場合。 x [3] は区間に極大値をと るxの値を含むが、 区間 の右端の方が極大値より も大きな値をとり、 区間 の右端で最大となる場合。 よって、12/3a-13-a-f3a-1/3 . at 1/3=12/24から、 =a- a a+ <f(1)=1-2a・12+α².1 =a²-2a+1 なお, p.344 で紹介した性質を用いる方法は, 検算で使う程度 としておきたい。 + may y=f(x) O x33 +=ax²-2ax+αの区間 0≦x≦2 3 p.368

解決済み 回答数: 1