学年

教科

質問の種類

数学 高校生

オカがわかりません。 オについては3枚目の写真のところでa=7を代入する理由がわかりません。 カについては考え方がよくわからないので教えて欲しいです🙇‍♀️ どなたかすみませんがよろしくお願いします🙇‍♀️

C 60 ア +t+ ①がある。 イ -a=0 ...・・・( ・・②となる。 (2) α を実数の定数とする。 0 の方程式 2+sin0=a+cos20 a sin0t とおく。 方程式 ① をt を用いて表すと (1) 問題 002 における方程式 ① を満たす 0 が存在するようなαの値の範囲を求めよ。 この問題について, 太郎さんと花子さんが先生と会話をしている。 太郎 : tの方程式 ②が実数解をもつようなαの値の範囲は, a≧ 先生:そうだね。 ウ I ですね。 ウ 花子: すると,この問題の解答は a≧ ですね。 H ウ 先生:そうかな。 例えば, a=7 は a≧ を満たすけれど, 方程式 2+sin0=7+cos20 H を満たす0は存在しないよ。 * ウ では, sind=t と置き換えた新しい変数の変域を押さえていない。 a≧ オ を満たすとき, 002において方程式 ①を満たす 0 は存在する。 オ の解答群 かつ I -1≤t ① t≦1 2-1≤t≤1 t≦-1, 1st 水の0が存在しない理由は カ である。 カ | については,最も適当なものを、次の①~③のうちから一つ選べ。 ウ a = のときだけ方程式 ①を満たす 0 が存在するから エ ①az ② a≧ |ウエ |ウエ H は方程式 ①を満たす 0 が存在するための必要条件であるが,十分条件でないから は-1≦t≦1 における方程式 ②が実数解をもつようなαの値の範囲であるから は 0≦t≦1 における方程式 ② が実数解をもつようなαの値の範囲であるか ウ 3 a≥

解決済み 回答数: 3
数学 高校生

丸で囲んだところについてです。 線分AP,PBはCより下にあることが示されていないのに、図のようになるので、と記述しても良いのでしょうか。設問または回答の都合上省略されているのでしょうか。教えていただきたいです。

6 第6章 積分法の応用 Think 例題183 面積の最小値 ***** 関数 y=logx で表される曲線をCとする. C上の2定点A(1, 0) Be, 1) と, C上の動点P(t, logt) (1<t <e) がある. 線分AP と曲線 Cで囲まれた図形の面積を S,, 線分 PB と曲線 C で囲まれた図形の面積を S2 とする. S+S2の最小値とそのときの値を求めよ. [考え方 グラフをかいて考える (大阪教育大) y=logx| B P y そのときの値の範囲 (1<t<e) に注意する. S=S+S は tの関数になるので, S を tで微分するこ とにより, 最小値を求める. log t A QR O 1 te I 解答 図をかくと、右のようになり、Sは, A B P. 44 (2) となっている. S=S+S2 とすると, 右上の図より s=logxdx-12(t-1)logt-12(e-t)(1+logt) = [xlogx-x-12((t-1)+(e-togt-1/2(e-t) (e-1)logt (e-t) =e-e-(0-1)- 1)-(-1) =-1/2(e-1)logt+/12/12+1 e-1 したがって, S'= + 2t e|21|2 t-(e-1) P 4ogt; AS logt: 三角形 B P log t 台形 Q R Slogxdx =xl0gx-fds 2t =xlogx-x+C S' = 0 とすると, t=e-1 Sの増減表は次のようになる. t 1 e-1 e S' 0 + S 極小 7 よって, Sの最小値は, t=e-1のとき. 01/21/12(e-1)10g (e-1) log (e-1) 練習 183 を通るとき, 曲線 y=f(x) とx軸とで囲まれる部分の面積Sの最小値とその >0,0<a<1 のとき,f(x)=mx(ax-1)^ とおく. 曲線 y=f(x) 点 (1.1) *** ときのαの値を求めよ. (大同大改) p.426

解決済み 回答数: 1