学年

教科

質問の種類

数学 高校生

ケコがわかりません。 3枚目の写真が私が解いてたときに書いたものなのですが、範囲のzのところを前の段階で求めた公式を当てはめて解いてたのですが、2枚目の写真の上の方の蛍光ペンのようになる理由がわかりません。どうやったら真ん中がpとなるのですか? 計算をしたのですが、すごい数... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである。 曲がっていない針を1本用意する。 次に、 平坦な机の上に、隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし、 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後。 針を机から取りあげる。 k1600 とする. 回目の試行について、 落ちた針が机に描かれた平行線と共有点をもつ場合は 1, 共有点をも たない場合は0となるような確率変数を X とおく。 また とする. X=Xi+X+... + X1600 X-m d ① X-n X-6 m X- m 回の試行を行う形式をとることで、 今回の実験をすることができた。 (2) 太郎さんと花子さんのクラスでは、32人の全生徒が「試行を50回ずつ, クラス全体で計1600 実験の結果, 落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 このとき 落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度は である。 R= 1000_5 1600 8 今回の実験結果から, (1) でおいたかの値の, 信頼度95%の信頼区間を推定しよう。 (i) 本間では, 正規分布表 (省略) を用いて答えよ。 標準正規分布(0, 1)に従う。 (1)の確率変数Zについて、正規分布表より P(- キク)=0.95 イ)に従う。 ! が成り立つ。 また、実験回数の値1600は十分大きい数なので, 二項分布 Bア )は近似的に 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと,Xは二項分布 B 7 正規分布 N (m, ) と見なすことができる。ただし キク ウ m= また, >0である。 I ① ここで, 確率変数Xが近似的に正規分布 N (m, ♂) に従うので、 確率変数Zを z= オ と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 (1)の結果より,標準正規分布 N(0, 1)に従う確率変数 Zはおよそ95%の確率で不等式 カキク zs カ をみたしている。 このとき、 確率変数 X, Zは関係式 ② キク Z= オ TO ここで, ①よりm= であり、これはを含む式である。 の解答群(同じものを繰り返し選んでもよい。) また、得られた実験結果では X=1000であったので 01600 ① 40 ③ X 1600 5 =R- 40 1600 が成り立つ。 ⑤ 1600p ⑥ 40p ⑦ カ 9 40 1600 さらに、①の エ については,次の仮定を適用して考えるものとする。 [仮定 エ の解答群 H の式中に現れる♪は、今回の実験での発生頻度Rの値 01600p ① 40p ② 40 41600p(1-p) 40p(1-p) p(1-p) 40 ③ 1600 AI-p) 1600 5 R 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度95%信頼区間は

解決済み 回答数: 1
数学 高校生

おんさの振動数の測定という実験の考察(2つどちらとも)が分かりません。解説お願いします🙇‍♀️

△ 実験19 おんさの振動数の測定 目的 気柱の共鳴音からおんさの振動数を求める。 見方・考え方 |仮説の設定 機器の破損 に注意 映像 振動数を求めるために必要な波長をどのように求めるかを考える。 おんさ(または低周波発振器) を鳴らしながら, ガラス管内の水面を下げていく と、図のの状態で1回目, ⑥の状態で2回目の共鳴音が聞こえると予想され る。このときの気柱の固有振動数がおんさの振動数と等しいと考えられる。 [準備| 気柱共鳴装置 (長さの目盛りを刻んだガラス a 管,ゴム管,水だめ, 支柱), おんさ(または 低周波発振器), おんさをたたくゴムつきの つち, 温度計 |手順| ①水だめを管口のあたりに支持して, ガラス 管に水を入れる。水面の位置は,ガラス管 のほうは管口近くに,水だめのほうは底の42 近くにする。 ②おんさをたたき, おんさを管口に近づける。 !注意 振動しているおんさがガラス管に b って触れると、ガラス管が割れることがあるので気をつける。 12 ③水だめをゆっくり下げていき, 気柱が最も強く共鳴したときの, ガラス管の 管口から水面までの距離〔m] をはかる。 ④さらに水だめをゆっくり下げていき、2回目に共鳴する位置をさがして,管 口から水面までの距離 I2 〔m〕 をはかる。 5 ⑤ 3, 4の測定をくり返してh, を数回はかりの平均値を求める。 これから,おんさによる音波の波長入(=2(Z2-Z)) [m] を求める。 ⑥ガラス管内の気柱の温度 [℃] をはかり, V=331.5 + 0.6t の式 (p.176) か ら音の速さ V[m/s] を求める。 V ●おんさの振動数f[Hz] を,f=一の式(p.148) から求める。 | 考察| ・気温が高くなった場合, . の値はどのように変化するだろうか。 ・音波の波長を 入 = 4L の式から求めた場合の結果と比較し、違いがあるかを 確認しよう。 結果が異なる場合,どのような理由が考えられるだろうか。 1 1 例題8 涙 ee 元 10 [指] 15 20 25 25 30 35 35 類 GEEN 186 第3編 第2章 音

未解決 回答数: 0
数学 高校生

ケコがわかりません。 ①2枚目の写真で蛍光ペンを引いているところなのですが、教科書で見たことがない解き方で、3枚目の写真(自分でまとめたノート)なのですが、これは黄色の蛍光ペンとピンクの蛍光ペンどちらなのですか? ②共通テストで統計が出るのですが、初めの二項分布とかは誘... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである, 曲がっていない針を1本用意する。 次に, 平坦な机の上に, 隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし, 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後, 針を机から取りあげる。 (1) 1≤k≤1600 +3. k回目の試行について, 落ちた針が机に描かれた平行線と共有点をもつ場合は1, 共有点をも たない場合は0となるような確率変数を X とおく. また + X=X+X₂++X1600 m とする. 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと, Xは二項分布 Bア, に従う。 で また、実験回数の値1600は十分大きい数なので, 二項分布 B( 正規分布 N(m,) と見なすことができる。 ただし ・① は近似的に X-m ① X-m ② X-a 6 m ③ X-02 m 回の試行を行う形式を 形式をとることで, 今回の実験をすることができた。 のの結果、落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 _1000_5 R=1 1600 8 このとき、落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度 今回の実験結果から, (1) でおいたかの値の, 信頼度 95%の信頼区間を推定しよう (i) 本間では, 正規分布表 (省略) を用いて答えよ。 1600 |標準正規分布 N (0, 1)に従う, (1)の確率変数Zについて, 正規分布表より P(カキクZカキク)=0.95 が成り立つ。 (i)の結果より,標準正規分布 N(0, 1)に従う確率変数Zはおよそ95%の確率で不等式 ウ m= σ²= H カキク ZSカ キク また, >0である。 をみたしている。 ここで, 確率変数Xが近似的に正規分布 N(m, ♂) に従うので, 確率変数Zを a である。 このとき,確率変数X, Zは関係式 ② 220 Z= オ ...2 Z= オ TOCH と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 をみたす。 er-14 ア ウ の解答群(同じものを繰り返し選んでもよい。) 1 1 ⑩ 1600 ① 40 ② 1 ③ ④ ⑤ 1600p 6 40p ⑦カ ⑧ 44 40 1600 D 40 1600 I の解答群 ⑩ 1600p ① 40p 144 4 1600p(1-p) 40 p(1-p) 5 40p(1-p) ⑦ 40 1600 ここで, ①よりm= ウであり,これはかを含む式である また,得られた実験結果では X=1000 であったので 3.081 X 1600 5 =R= 8 (1 が成り立つ。 さらに、①の エ については,次の仮定を適用して考えるものとする。 仮定 エ の式中に現れるかは,今回の実験での発生頻度Rの値 D 1600 p(1-p) R=555 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度 95%の信頼区間は

解決済み 回答数: 1
数学 高校生

数列の問題なのですが、初めから何を言ってるのかがわかりません。 問題の初めに装置Zの仕組みを読み、その下の問題に取り組んで見たのですが、何も入れてない装置Zに細胞Aと細胞Bを入れて、24時間後だからnは1日の1だと考えて解いては見たのですが、さっぱりわからず、解説を見てもあ... 続きを読む

第1問~第4間は いずれか3問を選択し、解答しなさい。 (1) p=1,g=2とする。 第1問(選択問題(配点 16) (i) a2= アイ b2 次のような装置Zについて考える学 【装置 Z 1個の細胞を装置Zで培養すると、 24時間後に5個の細胞Aと3個の 胞Bに変化する。 1個の細胞Bを装置 Zで培養すると, 24時間後に、 6個の細胞Aと2個の 胞Bに変化する。 である。 である。 また、数列 [o.), (b)の化式は an+1 I (1=1, 2, 3.-) ① して bn+1= オ (n=1.2.3.) I オ の解答 同じものを繰り返し選んでもよい。) 5an ① 60m 2b ③36枚 43an +2bn 5 3an +5bm 65an+3bn ⑦ 50+6bm p.gを自然数とする。 ある日、何も入っていない装置 Zを稼動させ. 細胞Aを 個細胞B を4個入れた。 以後, 24時間ごとに、 装置 Zの中の細胞A.Bの Bの個数を測 定する。 n を自然数とし, 装置Zが稼動してから日目の装置 Zの中の細胞 A の ⑧ 6am+26 96an + 3b (数学 B. 数学C 第1問は次ページに続く。) 個数を α 細胞Bの個数を6. とおく。 すなわち a₁ = p, b₁ = q 2 である。 (数学B 数学C第1次ページに

解決済み 回答数: 1
数学 高校生

なんで2次の項が、正か負か0かという場合分けをしていないんですか?

18 2次不等式 すべての』について… 次のの不等式の解がすべての実数となるような, 定数mの値の範囲を求めよ. (m+1)m²+2mx+m-1<0 グラフを活用する 解の配置と同様に, グラフを活用しよう. (東北福祉大, 改題) 「2次関数f(x)=ax+bx+c (a40) がすべての実験に対してf(x) <0を満たす」...(*) ということをy=f(x) のグラフを利用してとらえると,D co (*) 「放物線y=f(x) がx軸 (直線y=0)の下側にある」 ⇔「放物線y=f(x) が上に凸で,かつェ軸と共有点をもたない」 ⇔「2の係数α < 0, かつ、f(x)=0の判別式D<0」 2012 (20) になる。 なお, a=0のときは,f(x)=bx+c (直線) であり,このときつねに ②P-Q(1) f(x)<0となる条件は,傾きが0で切片が負であること、つまり Q(2) > a<0,D<0 yo yetin) /v=f(x) 3 ② 0 エ C 共上 y=f(x) (aco Do 「 b = 0 かつc <0」 TJ である. (f(x)が負の値を取る定数関数であることが条件 AU 解答 1767) くて m=-1のとき,f(x)=-2x2となり不適である. D<0 (0) Do (20) 20 Paffx) = (m+1)mx2+2mz+m-1とおく. ②①=0のとき, f (x)=-1となり適する。 .m≠-1,m=0 のとき, つねに f (x) <0となる条件は, (m+1)<0かつ 2次方程式f (x) =0の判別式D<0 が成り立つことである. (m+1)<0により,-1<m<0. D/4=m²-(m+1)m(m-1)=m{m-(m+1)(m-1)}<0 ①により,m-(m+1) (m-1)>0 m²-m-1<0 よって, 1-√5 2 1+√5 1-√5 <m< であり, ①とから, <m<0 2 2 以上により求める範囲は, 1-√√5 2. <m≤0 ①10:0 ico 注 「f(x)=ax2+bx+c (a≠0) がつねに正」 ⇔「a>0,かつ, f(x) =0の判別式D<0」 注 関数f(x) が最大値をとるとき, ○ 「f(x)がつねにf(x) <0」 「f(x)の最大値<0」 ・① である。この考え方で, f (x) =ax2+bx+c (a≠0) がつねに負となる条件 を求めてみよう。 まず, a<0でなければならず,このとき, f(x)=a (x+2)² - b262-4ac b2-ac の最大値は 4a -4a であるから, 最大値 <0b2-4ac<0 (∵ よって,その条件は, a <0 かつb2-4ac <0 4a>0) 「すべてのェに対してf(x) O とはならない。 M+1 70 mico グラフが上に凸 1-√√5 1+√5 <0< 2 2 y=f(x) T a>0,D<0 D=b4ac であるから, 前文の 条件と同じ 18 演習題(解答は p.62) すべての実数 +1≧0が成り立つような に対してー2(α-1)ry+y2+(a-2)y αの範囲を求めよ. (阪南大) thle まず1文字を固定し,別 の1文字だけを動かす ぱぱっと ①1対 51

解決済み 回答数: 1