学年

教科

質問の種類

数学 高校生

数II 微分 この問題の答えが私が解いた答えと合わないのですが、なぜ答えのようにならなくてはいけないのかわかりません。赤線引いたところが間違えたところです。 教えていただきたいです🙇‍♀️

356 重要 例題 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x2+ 9x とする。 区間 a≦x≦a+1 における f(x) の最大値 求めよ。 指針 この例題は, 区間の幅が1 (一定) で, 区間が動くタイプである。 00000 M() を 基本200 まず, y=f(x) のグラフをかく。次に, 区間 a≦x≦at1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら, 区間の右端で最大。 区間で単調減少なら, 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき,極大となるxで最大。 >0 (8) 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。 すなわち f(x)=f(a+1) となるとαの大小により場合分け。 A 最大 ® (1)M 最大 最大 [2] a<1ma+ 0≦a <1のと f(x)はx=1 M(a)=1 次に, 2 <α <3 f(a)=f(a+1) a3-6a2+▪ 3a² ゆえに よって a= 2 <α <3と5< [3] 1≦a< f(x)はx= M(a)= 解答 最大 または 9+√33 [4] 6 f(x)はx= M(a) f'(x)=3x²-12x+9 =3(x-1)(x-3) f'(x) = 0 とすると x=1,3 f(x) の増減表は次のようになる。 x 1 f'(x) + 0 - 3 f(x) 解答の場合分けの位置のイ y=f(x)メージ 以上から 4--- y=f(x)| 4 NN [2] [3] [4] 0 + 極大| 極小 01 3 a01 a 3a+1 x 4 0 検討 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1における最大値 M (α) は,次 のようになる。 [1] a+1 <1 すなわち α <0の [1] y とき f(x)はx=α+1で最大となり 1指針のA [区間で単調増 加で,右端で最大]の場 最大 合。 M(a) =f(a+1) =(a+1)-6(a+1)^+9(a+1) =a³-3a²+4 1 1 a O 1 a+1 3 3次関数のク p.344 の参考 ラフは点対 はない。す るとき 対称ではな 練習 |上の解答の =1/2とし Q= なお、放物 f(x)=x³- ⑤224よ。

回答募集中 回答数: 0
数学 高校生

練習29の問題について 青く囲ってあるところの意味が分かりません 教えてください🙇‍♀️🙇‍♀️

練習 第n群がn個の数を含む群数列 ③ 29 1|2, 33, 4, 54, 5, 6, 7|5, 6, 7, 8, 9|6. (1) 第n群の総和を求めよ。 について (2)初めて99 が現れるのは,第何群の何番目か。 D (3)最初の頃から1999番目の項は,第何群の何番目か。また,その数を求めよ。〔類 東京薬大] (1) 第n群は初項n, 公差 1, 項数nの等差数列をなすから,そ の総和は 1/12n{2n+(n-1)1}=1/21n(3n-1) (2)第k群は数列k, k+1, k+2,......, 2k-1 であるから, 99 が ←第群はんから始ま 第k群の第1項であるとすると り項数がんである (公差 1の等差数列)。 よって k≦99≦2k-1 すなわち 50≦k≦99 50+(Z-1)・1=99 ゆえに 7=50 したがって,第50群の50番目に初めて99が現れる! (3)1+2+3+…+m=1/12m(m+1)+2) (SI 2 + 2 2i=12mm+1) ゆえに,第 m群の末項はもとの数列の第 12m(m+1)項である。 TE 第1999項が第 m群にあるとすると ←まず, 第1999 項が含 まれる群を求める。 1 2 (m-1)<1999/12m(m+1) すなわち (m-1)m<3998≦m(m+1) ...... .. ① (m-1)m は単調に増加し, 62・63=3906,63644032である から,① を満たす自然数は ((0, 0), (3, m=63 形の顔および内 m=63のとき また 1/12(m-1)m=1262・63=1953 1999-1953=46 2 よって、 第1999項は 第63群の46番目の項である。 そして、その数は 63+(46-1)・1=108 (1) ←第62群の末項が第 1953 項となる。

回答募集中 回答数: 0