学年

教科

質問の種類

数学 高校生

(ⅲ)の解説の前半の下から2行目「ただ一つだけ存在する」の意味がよく分からないのでどういうことか説明して頂きたいです💦

21 辺の長さの変化と三角比 (1) BC=2√/3 のとき、 △ABCにおいて, 余弦定理により (2√3)=AB2+4²-2・AB・4cos60° AB-4AB+4=0 (AB-2)² = 0 よって AB = '2 この AB+BC" = ACA が成り立つから、△ABCは∠B=90°の直角三角形 (①) である。1 (ii) BC=4 のとき, AC=BC=4 であるから △ABCは∠Cを頂角 とする二等辺三角形である。 よって, 底角は等しく∠A=∠B=60° である。このとき, ∠C=180° ∠A-∠B=60° である。 △ABC はすべての内角が 60° であるから, AB=BC=CA=4 の正三角 形 (⑩) である。 ( BC=2√3 のときと, BC4 のときを図示すると図1のように なる。 BCの長さをaとする。 2√3より大きく4より小さい値を考え, 点Cを中心として半径aの円をかくと, 図2のように直線ℓと2点 で交わり、このとき, 合同でない △ABCが2つ存在する (△AB,C, △ABC)。 0<a<2√3 となる △ABC は存在せず,a>4となる△ABCは ただ1つだけ存在するから,2√3 <a < 4 を満たす値を考え, BC=√15 (②) が適当である。 図1 60° 2√3 x sin ∠B よって ∠ABC=180°∠ABC したがって AC BC sin ZB sin ZA 4 B A B B2 図2において, △CB1 B2 は CB1 = CB2 の二等辺三角形であるから ∠CB1 B2=∠CB2 B1 (2) △ABCにおいて, 正弦定理により 7 sin 40° よって sin <B= B sin∠ABC = sin (180°∠AB2C) = sin ∠AB2C (①) cos∠ABC=cos (180° AB2C) =-cos∠AB2C (③) Point 図2 sin 40° 7 x C 2√3 37 ←B C A 2²+2√3)=4' である。 AB: AC:BC=1:2:√3 である ことからも, 直角三角形である ことがわかる。 ingr B (C 図形と計量 sin (180°-0) = sin0 cos (180°-0) = -cos (

回答募集中 回答数: 0
数学 高校生

4番がわからないです😭😭😭

難易度 (1) 点Pがx軸上にあるのは,k= ウエ オ (2) 点Pが直線y=x-5 上にあるのは,k=| カ ただし, とする。 カ < 入 (3) C がすべての象限を通る条件は,f(ク コ サ このとき, 12 kを実数の定数とする。 2次関数f(x)=x²-2kx+2k²-2k-3 について, y=f(x)のグラフをC とする。 また, 座標平面はx軸,y軸によって四つの部分に分けられる。これら の部分を「象限」といい, 右の図のように, それぞれを 「第1象限」,「第 2象限」, 「第3象限」, 「第4象限」という。 ただし、座標軸上の点は,ど の象限にも属さないものとする。 2 3 Cの頂点Pの座標は (k, k- ア k- トナ << 目標解答時間 である。 L 12分 象限にある条件は、 チ くんく よって,Cが第3象限を通るようなんの値の範囲は + √ ネ である。 のときである。 キ 一のときである。 <ケである。 +√ サ VA 第2象限 第1象限 x<0 >0 である。 第3象限 x < 0 y<0 O <k< (4) Cが第3象限を通る条件を考える。 Cが第3象限を通るのは, 次の二つの場合である。 (i) C がすべての象限を通る。 (i) Cが第3象限を通るが、第ス 象限を通らない。 ここで, (ii) が成り立つ条件は、頂点Pが第 t 象限にあり, f(ソタである。 頂点Pが第 セ テ である。 x>0 y>0 第4象限 x>0 y<0 x SCHRES BA SRD) 日 音合 50 (配点 15 ) ≪公式・解法集 10 17 18

回答募集中 回答数: 0
数学 高校生

至急これの答えを持ってる方か解答教えてください。よろしくお願いします。😿😿😿😿

⑩ 一つの直角二等辺三角形 ② 一つの台形 10 難易度 ★★★ 図のように、 座標平面のx軸上に ACCE=4 となる点A, C, Eをとる。 △ABC と ACDE はいずれも∠B=∠D=90°の直角二等辺三角形であり、この二つの三角形を合わせた図形をKと する。 また、一辺の長さが2の正方形 FGHI を辺GH がx軸上にあるように左右に動かす。 すべての 図形はx軸に関して同じ側にあり、 すべての図形は、周および内部を考えるものとする。 B ✓ A H x 図形 K と正方形 FGHI に重なる部分があるとき, 重なる部分の図形の形状として正しくないもの は アである。 の解答群 0 A t-1 目標解答時間 15分 ① A 1+1 ① 二つの直角二等辺三角形 (3) 一つの五角形 実数t を用いて点G(b, 0) とし, 図形K と 正方形 FGHI が重なる部 を原点にとり、 b 以下, このf(t) について考える。 f(0) である。 点 分の面積を f(t) とすると. f(t) > 0となるようなの値の範囲は-5<t<5である。 ただし、1点のみが重なるときや, 重なる部分がないときは, f(t)=0とする。 bに当てはまるものの組合せとして最も適当なものは である。 の解答群 ② C 1-1 I 24- SELECT 90 60 C 1+1 E t-1 (5 E t+1 0≦t≦1のとき 1≦t≦3のとき 3St<5のとき である。 したがって, y=f(t) のグラフは である。ただし,y軸は省略している。 サ ]については,最も適当なものを、次の①~③のうちから一つ選べ。」 MMMM ů また, f(t)=ゥ を満たすt の値は、 t=0 の他にシ個ある。 f(t) = f(t)= f(t) = 4 + エ オ 1²+ (t- Rab パ 2 A ×2×2= S=1/2×2×2= x-1=0 25 (配点15) <公式・解法集 12 (+1)(1) 2 次

回答募集中 回答数: 0
数学 高校生

至急です🙇🏻‍♀️ (1)の解説お願いします 重要問題集2024共通テスト

47 難易度 ★★★ 目標解答時間 15 分 SELECT SELECT 90 60 花子さんの住んでいる町内で毎年行われているクリスマス会では、参加者全員にスナック菓子を1 袋ずつ配ることになっている。 今年は、花子さんがスナック菓子を買うことになり, 1年前のクリス マス会を知っている人に話を聞いた。 1年前は,参加者は30人で, スナック菓子は, 3袋入りの箱と7袋入りの箱の2種類が売られていた。 3袋入りをa箱,7袋入りを6箱買うと、30人全員に1袋ずつ残さず配ることができたという。ただし, はともに0以上の整数とする。このことから アイ 3a+76 が成り立ち、①を満たす a, bの組(a,b) は, (a,b)=(ウェ 組だけ存在する。 (1) 花子さんは,参加者が何人であれば,3袋入りと7袋入りの箱をうまく組み合わせて買うことで, スナック菓子を参加者全員に1袋ずつ残さず配ることができるかに興味をもった。参加者全員に1 袋ずつ残さず配ることができない場合について考えよう。 THI 3袋入りをx箱,7袋入りを箱買うとする。 ただし,x,yはともに0以上の整数とする。 (i)yが3の倍数のとき、y=31(10以上の整数)と表すと 7 3x+7y= (x+ ケ 1) であり, 3x+7yと表される数はコ以上の3の倍数すべてである。 (i)yを3で割った余りが1のとき, y = 3l+1(Zは0以上の整数)と表すと 1 3x+7y=サ (x+ l + ス + セ (ただし, > であり, 3x+7yと表される数は3で割った余りがソロである整数であり, そのうち最小のも のはタ である。 4 (yを3で割った余りが2のとき, (i), (ii)と同様に考えると, 3x +7y と表される数は3で割っ た余りがチである整数であり, そのうち最小のものはツテである。 オ カ キ の2 6 個ある。 (i)~(i)より, 3x+7y (x, y はともに0以上の整数)と表されない自然数は全部でト すなわち, 3袋入りと7袋入りの箱をどのような組み合わせで買ったとしても、参加者全員に1 袋ずつ残さず配ることができない参加人数は全部でト通りある。 (2) 今年は別のスナック菓子を買うことにした。 そのスナック菓子は2袋入りの箱, 5袋入りの箱の 2種類が売られており、中身のパッケージのデザインも異なっていたため, クリスマス会を盛り上 げるため,2袋入り 5袋入りのどちらも1箱以上買うことになった。 このとき2袋入りと5袋入りの箱をどのような組み合わせで買ったとしても、スナック菓子を (配点20) 参加者全員に1袋ずつ残さず配ることができない最大の参加人数はナニ人である。 10 【公式・解法集 48 整数の性質

回答募集中 回答数: 0
数学 高校生

イからわからないです、、 教えてくださると嬉しいです😭 必ずベストアンサーにさせていただきます!

a,b,cは定数とし, 0, 620 とする。 関数 f(8)=sin (a+b)+c に対して, y=f(0) のグ ラフについて考える。 (1) c = 0 とする。 y=f(0) のグラフが図1の の O ようになったとする。このとき であり、としてあり得る値の中で最小のもの イである。 また、ここで求めたと, d≧0 を満たす 実数 dを用いてf(0)=-sin(-20 +d) と表 すとき, y=f(8) のグラフが図1のようになっ たとする。 このとき, dとしてあり得る値の中で最小のものは, sin (0)= 図1 である。 I の解答群 I 03 (0) サ の解答群 ウ ⑩ sino ① cost 2-sinf [③ -cos (20) グラフが図2のようになったとする。このとき, カ である。 0≦6<2m を満たすbとして の解答群 π ① 4 ケ の解答群 ⑩ 0 軸方向に |だけ平行移動 ②0軸方向に ク y軸方向に Q: あり得る値はキ個あり,その中で最小のものはク である。 また, y=f(0) のグラフはy=cos オ8のグラフをケ したグラフと重なり,さらに,y= サ のグラフと重 なる。 | の解答群 ⑩ cost 1 cos 20 ③3③ 6' 2 cos 目標解答時間 15分 0 2 カ NA 4 6 T ① y 軸方向に だけ平行移動 3 ③ cos20 SELECT 90 60 カ 4 cos²20 2 yo ウ であるから, W 0| 2 図2 だけ平行移動 [0]] 5 cos² 0 (配点 15) <公式・解法集 77 79

回答募集中 回答数: 0
数学 高校生

数IIの三角関数です ぜんぶわからないので解説おねがいします。 なるべく早いと助かります😭

75 a,b,cは定数とし, a > 0, 6 ≧0 とする。 関数 f(0) = sin (a+b)+c に対して, y=f(0) のグ ラフについて考える。 (1) c=0 とする。 y=f(8) のグラフが図1の ようになったとする。このとき、ローア であり, bとしてあり得る値の中で最小のもの である。 また、ここで求めた α と, d≧0 を満たす 実数 dを用いてf(0)=-sin(-α0+d) と表 すとき, y=f(0) のグラフが図1のようになっ たとする。このとき, dとしてあり得る値の中で最小のものは, sin (0)=[ 図1 である。 I の解答群 イ イ I 9 π 03 ① 6 |の解答群 ク の解答群 π 0 0 4 ケ の解答群 ⑩ 0 軸方向に ②0軸方向に サ の解答群 ⑩ cost sin 0 ① cost 2-sin 0 3-cos (2) y=f(0) グラフが図2のようになったとする。このとき, オ C = カ である。 0≦b 2 を満たすbとして キ π π あり得る値は 1個あり,その中で最小のものはク である。 また,y=f(0) のグラフはy=cos オ0のグラフをケ したグラフと重なり,さらに,y=コ サ のグラフと重 なる。 ク ク 0 2³/ © - ② π ③π |だけ平行移動 y軸方向に 目標解答時間 15分 0 ① cos 20 2 cos- 2 T 2 TOT 3 カ 71/6 2/3/1 ① y 軸方向に だけ平行移動 3 cos²0 6" SELECT SELECT 90 60 COS220 5 2π ウ 5/3 ya R であるから, W O N. 3 T 2 図2 だけ平行移動 2 COS2 0 2 64 (配点 15 ) 79 80 【公式・解法集 77

回答募集中 回答数: 0
数学 高校生

数学共通テスト重要問題演習の116(2)のみ分かりません(><)必ず良い評価をするので至急回答いただけたら嬉しいです。

116 と表される。 ア ずつ選べ。 OD OD = sOA+(1-s)OQ=sOA+(1-s)(ア と表される。また,点Dは直線CP上にあるから,t を実数として OD = tOP + (1-t) OC=t( イ +(1-t) OC② 四面体OABCにおいて, 2点P, Q をそれぞれ辺 AB, BC 上に AP:PB = 1:2, BQ:QC=1:2 となるようにとり、2直線AQ と CP の交点をDとする。 OD OA, OB, OC を用いて表そう 点Dは直線 AQ上にあるから, s を実数として イ ア の解答群 3 1 の解答群 難易度★★★ ◎/OB+/OC①0B+/OC② L/OB+OC に当てはまるものを、次の各解答群のうちから一つ ⒸOA+OB ⒸOA+OBOA+OB ① ② より OA + SOA+(1-s)(ア = t であり, 4点O, A, B, C は同一平面上にないから,s= エ キ OB + OC 3 イ )+(1-t) OC これより, 例えばx= 目標解答時間 である。 と求まり,yをxを用いて表すと, y = イ)+B(ア であり, 4点 0, A, B, C は同一平面上にないから, α = +yxOA のとき、y= x xt + タ チ 18分 ウ I である。 である。 A ③ OB +/OC t= SELECT 90 ③OA+/OB 次に、辺OA上に OR = x OA (0<x<1) を満たす点 R をとり, 平面 PQR と直線 OCの交点を Sとする。 (1) 辺OA上を点Rが動くと, 点Sもそれに応じて動く。 その様子を調べてみよう。 点 S は直線 OC 上にあるから,yを実数として, OS = yOC・・・ ③ と表される。 また、点Sは平面PQR 上にあるから, α, β,yを実数として OS = α OP + BOQ + y OR ④ と表される。 ただし,α+β+y=ク である。 ③,④より y OC = オ 力 ケコ y, β=サ 0 B と求まり, S y, Y = 2 C XC y

回答募集中 回答数: 0