学年

教科

質問の種類

数学 高校生

分かるとこだけでも式を教えて欲しいです🙇‍♀️

5 9 A, B, Cの3人がじゃんけんを1回するとき,次の確率を求めよ。 (1) Aだけが勝つ確率 P. 46, 47 1 (2) 全員が違う手を出す確率 (3) 誰も勝たない, すなわちあいこになる確率 10 10本のくじがある。 そのうち当たりくじは1等が1本, 2等が3本で あり、残りははずれくじである。 このくじから同時に3本を引くとき 次の確率を求めよ。 (1) 当たりくじを少なくとも1本引く確率 (2)1等、2等、はずれくじをそれぞれ1本ずつ引く確率 → p.50~52 5 2 (3) 2等を2本以上引く確率 まで、何も得られない 11 001 数直線上を動く点Pが原点の位置にある。1個のさいころを投げて、 3の倍数の目が出たときはPを正の向きに1だけ進め,3の倍数でな い目が出たときはPを負の向きに1だけ進める。さいころを5回投げ 終わったとき,Pの座標が3である確率を求めよ。 →p.59 応用例題 11 12 当たりくじ3本を含む10本のくじを, A, B, Cの3人がこの順に1本 ずつ引く。 ただし, 引いたくじはもとにもどさない。 このとき,次の 確率を求めよ。 → p. 62, 63 (1)A, B がはずれ, C が当たる確率 (2) Cが当たる確率 2013三者択一式の問題が6問続けて出題される。どの問題でもでたらめに 答えを選ぶとき,次のものを求めよ。ただし、各問題でどの答えを選 ぶ確率も,それぞれ 1/18 と考えてよいとする。 (1)1問だけ正解する確率 (2) 正解する問題数の期待値 10

回答募集中 回答数: 0
数学 高校生

この問題の(2 でなぜ選択肢2が成り立つのか分かりません。照明があるのですがらあまりによって何がわかり、どうして矛盾するのでしょうか、、?、 解説お願いします🙏

例題太郎さんと花子さんは次の証明問題について話している。 二人の会話を読んで下の 問いに答えよ。 問題 直角三角形の斜辺の長さが自然数c, その他の2辺の長さが自然数 a, b であるとき, a, b, c のうち少なくとも1つは5の倍数であることを証明せよ。 花子:直角三角形の3辺の長さといえば,三平方の定理だね。 斜辺の長さが c, そ A の他の2辺の長さがそれぞれα, bだから問題は「自然数 α,b,c が a2+b2=c2 を満たすとき, a, b, c のうち少なくとも1つは5の倍数である」 という性質を証明することだね。 C b B a 太郎:こんな性質があったなんて知らなかったよ。本当に成り立つのかな。 花子: 例えば, a=3, b=4,c=5のときは,cが5の倍数になっているね。 太郎: 他にアのときもこの性質が成り立つよ! どうやらこの性質は成り立つようだね。 じゃ あ、どうやって証明すればいいだろう。 5の倍数であることを証明するから, mを自然数と してα=5mとおいて考えればいいかな。 花子: それだと,その後どうすればいいかわからないよ。こういうときは,授業で習った 「背理法」 を使えばいいんじゃない? 太郎 : 「命題が成り立たないと仮定して, 矛盾を導く」という証明方法だったから,「 A a,b, chi B を満たし,C」と仮定すればいいね。 (1) アに当てはまる最も適当なものを,次の①~③のうちから一つ選べ。 ⑩a=1,6=2,c=√5 ① a=1,6=2,c=3 ② a=8,615,c=17 ③ a=13,6=12,c=5 (2) A B C に当てはまる組み合わせとして最も適当なものを、次の①~③のうちか ら一つ選べ。 イ A B 2+b2=c ⑩ 自然数 ① 自然数 2 ② 自然数 C 自然数 ' +62≠c2 ③無理数 a² +b² c² ²+62=c a2+b2=c a, b, c のうち少なくとも1つは5の倍数でない a, b, c のうち少なくとも1つは5の倍数である a, b, c のいずれも5の倍数でない a, b, c のうち少なくとも1つは5の倍数である 数学- 10

回答募集中 回答数: 0