学年

教科

質問の種類

数学 高校生

印をつけたところの意味がよくわかりません。 どういう考えでこういう式になっているのですか。

Think 例題 236 2 円の位置関係(2) △右の図のように、半径50円 0 と半径1の円O2 が あり、中心間の距離は 012=2 である。 円Cが円Oに内接し, 円 02 に外接しながら動くと 円Cの半径rのとり得る値の範囲を求めよ. き 解答 円Cと円Oの接点と中心C, O. は一直線上にあり, 円 Co- 円Oの接点と中心 C, O2 も一直線上にある . 818-84 これらから, CO15-, CO2=1+r 加えて, 3点C, O1, O2 の位置関 係は, 3点C, O1, O2 が三角形を作 るか,または3点C, O1, O2 が一 直線上に並ぶかである. このことを式で表すと, 練習 236 *** [考え方 題意を満たすように円C を動かしてみると, 円Cの半径が最も大きいときと、最も小さ いときの,3つの円の中心の位置関係が見えてくる. 002=2 ① を代入すると, |CO1-CO2 ≤0102≤CO1+CO₂ RESERVA Focus 円 02 に外接しながら動くとき,04円の半径が最大 円Cが円に内接し, |(5-r)-(1+r) | ≤2≤(5-r)+(1+r) よって, 14-2r|≤2≤6 すなわち, 4-2r|≦2 より, -2≦4-2r≦2 この不等式を解くと, -2≦4-2r から, r≤3 4-2r≦2 から, 1≦r よって, 円Cの半径rのとり得る値の範囲は, 1≤r≤3 201 HO='AA 2億円の性質 475 08 画 円の位置関係は,中心の位置関係に注目する **** 右の図のように、半径160円 0, 半径60円 A, B, 半径 の円Cがある. 3円 A,B,Cは円に内接し, A と B, B と C, C とAは 外接しているとき,の値を求めよ. •C 01 02 円Cの半径が最小 800 1 C 012 +80- 83点 C, O1, O2 につ HO='8 いて、 O2 460 H COL+CO2O102, CO2+O1O2≧CO1, OOCOCO2 |CO-CO2| ≤0102≤CO₁+CO₂ (p.425 参照) .0 •C 第8章

回答募集中 回答数: 0
数学 高校生

250.2 また、図を書く場合これでもいいですよね? (よく見る方のx-y図を90°時計回りに回転させた図) もう一つ聞きたいのですが、積分の問題で面積を求める時、記述式なら図を書いておくに越したことはないですか??(言葉不足なときに図がそれを示してくれているみたいなことっ... 続きを読む

378 000000 重要 例題 250 曲線x = f(y) と面積 (1) 曲線x=-y²+2y-2, y軸、2直線y=-1, y=2で囲まれた図形の面積Sを 求めよ。 p. 358 (2) 曲線x=y2-3y と直線y=x で囲まれた図形の面積Sを求めよ。 指針 関数x=f(y) は, y の値が定まるとそれに対応してxの値がちょうど1つ定まる。つまり、 xはyの関数である。 x = f(y) のグラフと面積に関しては, xy平面では左右の位置関係が (笑)よろ 問題になる。 右のグラフから左のグラフを引くことになる。5月 (1) x=-(y-1)^-1であるから、グラフは,頂点が点(-1,1), 軸が直線y=1の放物線 KAMP である。 → HJANTUO KI GA KE 01221 (2) y²-3y=yの解がα, β(α<ß) のとき, p.352で学習した公式が同様に使える。 解答 (1) x=-y2+2y-2=-(y-1)^-1 [L-1≦x≦2ではー(y-1)-1 <0 であるから、 右の図より [S) S=-S(-y²+2y-2)dy 1³ 3 S²(y-a)(y-B)dy=—— (B—a)³ +y2- (2) _x=y²-3y=(y-2)²-2 =v 05(x)0 曲線と直線の交点のy座標は, y2-3y=y すなわちy²-4y=0 を解くと, y(y-40から y = 0, 4 よって、 右の図から, 求める面積は 28 x 図 S=(y- (v2-3y)}dy =-{(-18 +4-4)-(1/3+1+2)}-6 4-4) - ( ²3 + 1 + 2)} = 661-21 (21-4 3 9 6 = £1 C00=(2xảy 0≤ (x) #5 12x20 xh(x- y₁ -5 9 4 YA SV-S a -21 4 3 320 であるから =f'(v²-4y)dy=-Sy(y-4)dyリーであり、定義が 32 =-(-1) (4-0)³-3²0 6 図形の面積Sを求めて 2 1 O x 4 x a 2曲線間の面積 EL 区間 c≦y≦dで常に f(y)≧g(y) のとき, 2曲線x=f(y), x=g(y) と 2直線y=c, y=dで囲まれ た図形の面積Sは s=${f(y)=g(y)}dy YA xx=g(yd 0 S x=f(y) 131 右のグラフから左のグ ラフを引く y軸はx=0であるから (1) S², (0-f(x))dy (4) KL (2)(x-(y)ldy を計算することになる。」 Sv=1 積 で を求 部分 まそ ま を作 より に近 実 と、 y 0 で 方形 分 n

回答募集中 回答数: 0
数学 高校生

軸の方程式みたら最大値は190のときじゃないんですか?

44の場合 _1個 46の場合 Q3 県の 積の 県が (1) α = 70 とする。 x≧175 のとき, ① より x= x=70,300のとき, z=10000 であるから, グラフの軸の方程式は 70+300 2 =185 である。 x= z=-4(x-300)(x-70)-10000 ・x<175 のとき②より x= z=-4 (x-300) (x-80)-5000 x = 80,300 のとき, z=-5000 であるから, グラフの軸の方程式は =190 である。 よって 求めるグラフは次のようになる。 ①と②それぞれのグラフの軸 と直線x=175 の位置関係によりグラフの概形として最も適当なものは ②である。 x= BA 80+300 2 グラフより, zが最大となるxの値は x=185 (⑦) (2) α = 40 とする。 100 x≧175 のとき, ①より *********------- z=-4(x-300)(x-40)-10000 x=40,300のとき, z=-10000 であるから, グラフの軸の方程式は 300+40 2 2-1777 =170 である。 x<175 のとき,②より z=-4(x-300)(x-50-5000 175 185 200 190 x=50,300のとき, z=-5000 であるから, グラフの軸の方程式は 300+50 2 = =175 である。 x よって, zが最大となるxの値は x=175 (⑤) Iz=-4(x-370x+21000)-10000 =-4(x-185) +42900 1z=-4 (x2-380x+24000-5000 =-4(x-190) +43400 1①,②のグラフの軸の位置に着目 する。 解法の糸口 zのグラフは、上に凸の放物 線の一部どうしをつないだもの であるから 2人の会話にある ように軸の求め方を考える。 z=-4(x-340x+12000)-10000 -=-4 (x-170)² +57600 +4 明 z=4(x2-350x+15000) 5000 +0=-4(x-175)²+57500

回答募集中 回答数: 0
数学 高校生

なぜ、b≦0とb>0で場合分けをするのですか? b<0とb>0ではだめなのですか? またb≦0だった場合、b>0のような場合分けの仕方はしないんですか?

107 2次関数の区間における最大・最小 74 [精調]] con 100 226 127 (D) を(0) 242/2alb(2P1) とおく。 区間15分 で場合分けをすることになります。 一方,650のときにはグラフは上における 放物線か直線になるので,次の事実を利用できます。 (一般にup(z)のグラフが区間:amzbにおいて、上に凸(ある。 は線分) であるとき, が成り立つ。 解答 uf(t) のグラフを考えましょう。 もりのときにはグラフは に凸な放物線ですから,軸と区間 -15E1の位置関係によっ TEBVC g(x)=0 "g(a)20 g(b)20" が成り立つ。また、1において下に凸(あるいは線分) であるとき, において g(x))"g(a)=0 かつg(b)≧0" f(t)=2+2√/2at+b(212-1) =2612+2√2at+2-b である。 ( b>0のとき において, "-1≦t≦1のすべてのに対して f(t)≧0である”.....( * ) ためのa,b の条件を tu 平面における u= f(t) ...... ① のグラフを利用して求める。 (i) b0 のとき b<0 のとき, ① は上に凸な放物線であり, b=0 のときは直線であるから, * 20 f(-1)≧0かつf(1) baya-2かつb≧2√2a-2 #est both とかでは ないのし F(t)=20(1+2)²-²+2-6 WA SH 1 bitt u=f(t) 95²

回答募集中 回答数: 0
数学 高校生

(2)の値は何かの数式の証明であったり、数学的に重要な値ですか?

312 重要 例 例題 187 面積 | 曲線 C:y=e 上の点P(t, e') (t>1) における接線をl とする。 Cとy軸の共 有点をA, lとx軸の交点をQとする。 原点を0とし, △AOQ の面積をS(t) とする。 Q を通りy軸に平行な直線, y 軸, C およびlで囲まれた図形の面積を T (t) とする。 (1) S(t), T(t) をtで表せ。 解答 T(t) S(t) を利用する。 計まず、グラフをかいて、積分区間やCとの位置関係を確認する。t>1に注意。 (1) A(0,1)である。また, lの方程式はy-e=el(x-t) (ex)'=ex ← この方程式において, y=0 とすれば, 点Qのx座標がわかる。 (2) まず. を求める。 そして、 極限値を求める際は lim- 0 XC (2) lim (1) 点Aの座標は (0, 1) y=ex より y = ex であるから, 接線lの方程式は y-et=et(x-t) すなわちy=e'x+(1-t)et. ① において, y=0 とすると よって x=t-1 ゆえに、点Qの座標は したがって ゆえに T(t) → 1+0 S(t) et-1-1 s(t)=1/2 · (t−1)·1=-² t-1 2 またT(t)='"^'[ex_{e'x+(1-t)e'}}dx lim →1+0 t-1 -[²-x² + (1-1)e²x ¹ = ²(t-1)²+e²-¹-1 2 T(t) et (2) 756) = -²2₁ [ {(t−1)² + e²-¹-1}=e²(t-1)+ S(t) t-112 ここで, t-1=s とおくと, t → 1+0 のとき よって lim T(t) 1+1+0S(t) 0={x+(1-t)}et (t-1, 0) t-1>0 (1) e³–1 を求めよ。 =lim 8 +0 S ·=0+2・1=2 -=1 (2) lim 2(ef-1-1) t-1 s → +0 練習 g(x) = sin' x とし, 00<πとする。 xの2次関数y=h(x)のグラフは原点を調品 ③ 187 としん(0)=g(0) を満たすとする。 このとき, 曲線 y=g(x) (0≦x≦)と直線 x=0およびx軸で囲まれた図形の面積をG(0) とする。 また, 曲線 y=h(x)とい 線 x = 0 および x軸で囲まれた図形の面積をH(0) とする。 (1) (0) H (0) を求めよ。 G(0) を求めよ 0+0 H(0) e*-1 1 [類 東京電機大] ・基本 81, 177 = 1 (p.121 参照) X-0 T(t) /t-1 1Q 積分区間においてC は常により上にあ る。 lime(t-1) 20 解答 (3) (2) S' 0<a< 範囲で である 右のよう よって, 習 f(x)=ex- 188 (1) t は実数 で囲まれた

回答募集中 回答数: 0