学年

教科

質問の種類

数学 高校生

次の95の問題でどうやったら青線の様なものを作ろうと考えれるのでしょうか?どなたか解説お願いします🙇‍♂️

94 数列{√3m² + 2n+1 + an} が収束するように定数αの値を定めよ。 また, そのときの数列の極限 値を求めよ。 a≧0 のとき, lim(√/3n² +2n+1+an) ∞ であるから >0のとき 00+00 α = 0 のとき 00+0 {√3m² +2n+1 + an}収束しない。 (発散する) = (0+0) = 0 limb=lim +80 70-+00 (an+bn)-(an-bn) 2 = 2 {lim(an +bn) — lim(an − bn)} 1 = (0-0)=0 2 α < 0 のとき √3m² + 2n+1+an= (√31 -2n+1+an)(√3m² +2n+ an) 分子を有理化する。 したがって,この命題は真である。 3n2+2n+1-an 3n2+2n+1²n² √3m² +2n+1 96 lim (pn²+n+g)a=p+1のとき, 数列{a} (3-4)n²+2n+1 = N /3n² +2n+1- (ア) 0 のとき よって ne lim(√3n²+2n+1+an) = lim (3n+2n+1 28-00 2+2n+1-an = 00 mn²an = lim (pn²+n+q)an·· lim(pn²+n+g)an pn²+n+ 1 1 p+ 4 (3-a)n+2+ n =m 88810 分母分子をnで割る。 1 2 1 3 + (p+1)·· p+1 + -a 根号の中は と p Þ n n² して割る。 (イ) p=0 のとき a² = 0 nの係数3 が lim(n+g)an=1でるから - 0 であれば,○○ 収束するためには α <0 より 3 このとき, ①は 1 2 + n 2 3 lim 2 1 3 + + + √3 2√3 3 n n したがって a=― √3. 極限値 √3 3 95 数列{a}, {6}において,次の命題の真偽をいえ。 たは∞ に発散する。 = limn (1) liman=8, limb =∞ ならば lim (a-b)=0 00 8-1 (2) lim (a+b) = 0, lim (a-bm) = 0 ならば lima = limb=0 81-0 100 (1) an=ne,b=n とすると, lima=∞, limb = であるが 10 lim(an-bn)= lim (n2-n) 28-00 したがって,この命題は偽である。 0 480×18 1 (1-1)= = 10 (an+bn)+(an−bn) (an+bn)-(an-bn) 2 (2) an= ら, lim(an+6m)=0,lim (an-bn) = 0 のとき bn = であるかan, by を an+b, 2 a-b で表す。 (an+bn)+(an-bn) limax= lim 18-00 →0 2 {lim(an+bn) +lim(an-bn)} 2 n2 limnan lim(q) n+g n = lim (n+ = ∞0 1+P n (ア)(イ)より、 求める極は Jp≠0のとp+1 lp=o = 0 の 8 P 97 極限値 1 2n-1 (n+sinn) を求めよ。 1 (nsinn0) n sinn0 + 2n-1 2n-1 2n-1 n 1 1 ここで lim = lim = - 2n-1 1 2 2 n また、すべてのnについて -1 sinne 1 2n0 より 辺々を2-1で割ると 1 sinn0 1 2n-1 2n-1 2n 1 1 ここで, lim- = 0, lim 2n-1 1 -2n-1 =0 であ sinn0 けさるうたの lim

解決済み 回答数: 1
数学 高校生

1番が分かりません(2番は1番が分かれば大丈夫なので省きます) Qの中でPを満たさない領域もあると思うので、証明出来ていないと思うのですが… 逆ならQの方が大きくPを全て含むので分かるんですが、どうして違うのか分からないので解説して欲しいです

基本(例題 131 領域を利用した証明法 x, は実数とする。 (1)x2+y2+2x<3ならばx2+y2-2x<15であることを証明せよ。 (2)x2+y^≦5 が 2x+y≧kの十分条件となる定数kの値の範囲を求めよ。 解答 p.194 基本事項 2 (1)与えられた命題は,式の変形だけでは証明しにくい。このようなときは, 領域を利用した証明法が有効。 この命題の仮定と結論 gの不等式を満たす点(x, y) 全体の集合を、それぞれ P={(x, y)|x2+y'+2x<3}, Q={(x, y)|x2+y^-2x<15} とすると「pg が真である」⇔PCQ であるから,P,Qを図示することによ りらくに証明できる。 (2) 「bgが真である」「はαの十分条件」PCQ したがって、ここでは,{(x, y)|x2+y^≦5}{(x,y)|2x+yk} となるようなkの 値の範囲を、図をかいて求めればよい。 CHART xyの不等式の証明 領域の包含関係利用も有効 (1)x2+y2+2x<3⇔ (x+1)2+y^<22 x2+y²-2x<15⇔(x-1)'+y^<42 P={(x, y)|(x+1)²+y²<2²}, Q={(x, y)|(x-1)^+y2<42} とすると,図から,PCQが成り 立つ。 よって, x2+y2+2x<3ならば P 209 <Pは 円 (x+1)2+y2=22 -3 5 x の内部, Qは 円(x-1)+y2=42 の内部。 x2+y²-2x<15が成り立つ。 (2) P={(x,y)|x2+y2≦5}, Q={(x, y)|2x+yk} とすると x2+y^≦5⇒2x+y≧k が成り立つ ための条件は PCQ k < 0 かつ ゆえに よって,図から 12-0+0-k√5 √√22+12 |-k|≧(√5)2 よって k≤-5, 5≤k k<0 との共通範囲をとって k≤-5 12x+y=k ⇔y=-2x+k 傾きが-2, y切片 15 x 直線。 -√5 √5 (円の中心 (0,0)と -5 直線の距離) (円の半径 ) |-k|=|k|である から k5

解決済み 回答数: 1
数学 高校生

数学B、数学的帰納法の問題についての質問です。 下の赤いボールペンで線を引いた下から2行目のn=2kの部分ですが、この時「kは自然数」や「kは整数」などの断り書きはしなくても良いのでしょうか? 普通の帰納法の問題では、n=kで命題の成立を仮定する時に、nが自然数なのでn=k... 続きを読む

EX (1,2, b1=1 および 033 1+1=2+3b, b+1=a+2b(n= 1, 2, 3. ......) で定められた数列{a}{b}がある。 Cab とするとき (1) C2 を求めよ。 (2) Cm は偶数であることを示せ。 (3)が偶数のとき, C7は28で割り切れることを示せ。 [北海道太] ←各漸化式に n=1 を代 b2=a1+2b1=2+2・1=4 (1) a2=2a1+3b」=2・2+3・1=7, よって C2=azbz=7.4=28 (2) [1] n=1のとき C=ab=21=2であるから, Cn は偶数である。 [2] n=kのとき, C が偶数であると仮定すると, Ck=2mm は整数)と表される。 n=k+1のときを考えると Ck+1=ak+1bk+1=(20+3bk) (+20k) =2a2+7akbk+65k2 =2ak+7.2m+60m² =2(ax²+7m+3bk²) +7m+3bk2は整数であるから, Ck+1 は偶数である。 よって, n=k+1のときも成り立つ。 [1] [2] から すべての自然数nに対してcmは偶数である。 (3) [1] n=2のとき C2=28であるから, C7は28で割り切れる。 [2] n=2kのとき, C2kが28で割り切れると仮定すると, C2k=28m (mは整数)と表される。 入する。 ←数学的帰納法で証明。 ←akbn=ch=2m ←漸化式から、すべての n に対して, an, bm は整 数である。 ←数学的帰納法で証明。 [n=2, 4, .... 2k, ... が対 象である。

解決済み 回答数: 1