学年

教科

質問の種類

数学 高校生

この文がなぜ①から言えるのですか? 解説お願いします🙇‍♀️

DOO 本71 10 くる =a, 例題 31 線分の垂直に関する証明 日本 基本 00000 ABCの重心をG, 外接円の中心を0とするとき,次のことを示せ OA+OB+OC=OH である点Hをとると, Hは △ABCの垂心である。 (2) (1)の点Hに対して, 3点0,G, Hは一直線上にあり GH=2OG 指針 [類 山梨大 ] 基本 25 基本 71 ① 三角形の垂心とは,三角形の各頂点から対辺またはその延長に下ろした垂線の交 点である。 AH≠0, BC ≠0, BH 0, CA ≠0のとき AHLBC, BHICA AH BC=0, BH CA=0...... であるから,内積を利用して, A〔(内積)=0] を計算により示す。 ◯は △ABCの外心であるから, OA|=|OB|=|OC| も利用。 CHART 線分の垂直(内積)=0を利用 (1)∠A=90°,∠B キ90° としてよ A 直角三角形のときは 635 1 G) 1815 解答 い。 このとき,外心Oは辺BC, CA上にはない。 **** ① AOO BC CAUAY OH=OA+OB+OC から AH OH-OA=OB+OC ゆえに A・BC =(OB+OC) (OC-OB) よって =OC-OB=0. 同様にして B BH CA=(OA+OC)·(OA-OC) =|OA|-|OC|=0 また,① から AH = OB+OC = 0, BH=OA+OC≠0 よって, AH ≠0, BC≠0, BH = 0, CA 0 であるから である。 AHLBC, BHLCA C)=10=408+00S AO+50 LS (数学A) 目 C=90° とする。 このとき,外心は辺 AB 上にある (辺AB の中 点)。 直径に対する円周角に 必ず90% IBC=OC-OB (分割) [△ABCの外心0→ 50+100A=OB=OC すなわち AH⊥BC, BHICA 15? したがって, 点Hは△ABCの垂心である。 検討 検討 外心、重心、心を通る直 線 (この例題の直線 Olar=9OGH) をオイラー線 と いう。ただし、正三角形 は除く。

解決済み 回答数: 1
数学 高校生

イコールはなぜついてもよいのですか? 角B<90°、角C<90°からa≠c,a≠-cになる理由も知りたいです

基本 例題 87 座標を利用した証明 (2) △ABC の各辺の垂直二等分線は1点で交わることを証明せよ。 指針 p.123 基本例題 74と同じように、計算がらくになる工夫をする。 座標の工夫 ① 座標に0を多く含む [2] 対称に点をとる 基本 74 この例題では,各辺の垂直二等分線の方程式を利用するから、各辺の中点の座標に分 数が現れないように, A (2a,26),B(-2c, 0), C(2c, 0) と設定する。 なお、本間は三角形の外心の存在の座標を利用した証明にあたる。 点と直線の 解答 ∠Aを最大角としても一般性を失 わない。 このとき,∠B <90° ∠C <90° である。 y A(2a, 2b) 開菜 注意 間違った座標設定 例えば, A(0, b),B(c, 0), C(-c, 0) では,△ABC ただし 直線BC をx軸に,辺BCの垂直 二等分線をy軸にとり,△ABC の頂点の座標を次のようにおく。 (A(2a, 2b), B(-2c, 0), C(2c, 0) a≥0, b>0, c>0 NX は二等辺三角形で, 特別な M K C -2c OL 2cx 三角形しか表さない 座標を設定するときは, 一般性を失わないように しなければならない。 傾きは であるから,mo- =-1より <90°, ∠C <90° から, a≠c, aキーcである。 更に,辺BC, CA, ABの中点をそれぞれL, M, N とす 2 ると,L(0,0), M(a+c, b), N(a-c, b) と表される。 辺ABの垂直二等分線の傾きを とすると, 直線 AB の b atc b 証明に直線の方程式を使 用するから,(分母)=0 とならないように,この 条件を記している。 &(S) 0-2b -2c-2a b atc です a+c 点を m=- 交 28- よって,辺AB の垂直二等分線の方程式は 平行 の y-b=-- atc(x-a+c) 点N (a-c, b)を通り, 傾き - a+c の直線。 b すなわち atc a2+b2-c2 y=- -x+- b ①の交点である 辺 ACの垂直二等分線の方程式は,①でcの代わりに b -c とおいて a²+b²-c² a-c x+ b y=-b 2直線①②の交点をKとすると, ①②の切片はと もに a²+b²-c² であるから K(0, a² + b²-c²) b 点Kは, y 軸すなわち辺BC の垂直二等分線上にあるから, ◆辺ACの垂直二等分線 b a-c AC に垂直で, 点 M(a+c, b) を通るから ①でcの代わりに とおくと,その方程式 得られる。 は,傾き の直線 ② △ABCの各辺の垂直二等分線は1点で交わる。

解決済み 回答数: 1
数学 高校生

(2)の問題が解説見てもわからなくて、教えてほしいです🙇‍♀️

(1)正四面体に外接す 2) 正四面体に内接する球の半径をα を用いて表せ。 CHART & SOLUTION (1)基本例題138と同様に,頂点Aから底面△BCDに垂線 AH を下ろす。 外接する球の中心を0とすると, 類 神戸女 ◎基本 ( 重要例 1辺の を, A (1)線 (2) S CHAR AD=C 2次関 (1) D OA=OB=OC=OD(=R) よって、直角三角形OBH に着目して考える。 である。また, 直線AH 上の点Pに対して, PB=PC=PD であるから, 0は直線AH 上にある。 B (2) 内接する球の中心を I とすると, Iから正四面体の各面に 下ろした垂線の長さは等しい。 正四面体をⅠを頂点とする 4つの合同な四面体に分けると, 体積は 四面体 IABC, A 正四面体=4×(四面体 IBCD) IACD, IABD, IBCD これから, 半径を求める。 B (例題 136 で三角形の内接円の半径を求めるとき,三角形を つの三角形に分け、面積を利用したのと同様。) HASE HBAC khe (1) 頂点Aから底面 △BCD に垂線 AH を下ろし、外接する 球の中心を0とすると, 0 は線分AH上にあり ←AH=6 3 -a, BH= OA=OB=R は基本例題 138 (1) の ゆえに OH=AH-OA= √6 03 果を用いた。 a-R A 3 よって △OBHで三平方の定理から 2 BH2+OH2=OB2 (3)²+(√a-R)²=R² すなわち - 2√6 3 -αR=0 ゆえに R=- 3 √6 a= 2√6 4 a B (2) 内接する球の中心をIとする。 4つの四面体 IABC, IACD, IABD, IBCD は合同であるから V=12 V=4×(四面体IBCDの体積)=4 (13△BCD・ 1.13 = 4.1. √3a²• r = √3a²r =4• 123から 3 √2 = 12 √3 a²r よって r=- a 12 PRACTICE も (2) S 解答 AD= (1) (2 V=12 12 138(2)の針用 -αは基本例題 F

解決済み 回答数: 1
数学 高校生

この問題の(1)の解説の、√2/√3a²がどうやって√6/3aになったのかがわかりません、、教えてください🙇‍♀️

を 141 基本 例題 138 正四面体の高さと体積 1辺の長さがαである正四面体 ABCD がある。 (この正四面体の高さをαの式で表せ。 (2)この正四面体の体積をαの式で表せ。 CHART & THINKING 空間図形の問題 平面図形 (三角形) を取り出す 0000023 基本137. 重要 139 (1) 頂点Aから底面 BCD に垂線 AH を下ろすと,AH が正四面体の高さとなる。AHを 求めるために、どの三角形を取り出せばよいだろうか? AB=ACAD であることに, まず注目しよう。更に,点HはBCDのどのような位置にあるかを考えよう。 (2) 四面体の体積の公式において, (1) で求めた「高さ」に加えて何を求めればよいかを判断 しよう。 解答 (1) 正四面体の頂点Aから底面 △BCD に垂線AH を下ろすと, AB=AC=AD であるから △ABH=△ACH=△ADH よって BH=CH=DH D B ゆえに、点Hは BCD の外接円の 中心で,外接円の半径はBH である。 よって, BCD において, 正弦定理により 1 a a BH= = 2 sin 60° 3 したがって AH=√AB2-BH= = a². 2 a a A (1) AABH, AACH, △ADH は,斜辺の長さ がαの直角三角形でAH は共通辺である。 直角三角形において, 斜 辺と他の1辺が等しいな らば互いに合同である。 CD sin DBC -=2R CD=α, <DBC=60° △ABHに三平方の定理 を適用。 4章 15 三角形の面積、空間図形への応用 2 √6 = 3 3 a ? B a H (2) BCD の面積は a.a sin 60°- よって、 正四面体 ABCDの体積は √3 = a² 4 4 1/13 = ABCD AH-1√361 /2 a= 3 3 4 12 RACTICE 1383 ABCD の面積 -BD・BCsin∠DBC (四面体の体積 ) =113×(底面積)×(高さ)

解決済み 回答数: 2