学年

教科

質問の種類

数学 高校生

この問題の図示が難しくて出来ません 分数の三次関数のグラフの書き方を教えてください! お願いします!!

3次曲線と接線 99 とができるような, a, bの条件を求め, 点 (a, b) の存在する領域を図示せよ。 点(1,0)を通って, 曲線 y=x²+ax²+bxに異なる3本の接線をひくこ 精講 曲線 y=f(x)の接線の方程式は, 接点(t, f(t)) により決まります. このときの接線の方程式は y=f'(t)(x-t)+f(t) であり,これが点(α, b) を通ることから,t の方 程式 b=f'(t)(a-t)+f(t) ......(*) を得ることができます. この方程式をみたす tを 求めれば,その点における接線が1本ひけること になります。 すると, 3次関数のグラフでは接点 が異なれば接線も異なるので, 接線の本数=接点の個数 =方程式(*)の実数解の個数 ということになります。 解答> 解法のプロセス 接線の方程式 y=f'(t)(x−t)+ƒ(t) y=x³+ax²+bx y'=3x²+2ax+b 曲線上の点(t,t+at+bt) における接線の方程 式は f(t)=2t³—(3—a)t²—2at—b とおく. 3次関数のグラフでは接点が異なれば接線 も異なるので 点 (1, 0) を通る接線が3本ひける ⇔f(t)=0 が異なる3つの実数解をもつ ↓点(1,0)を通る 0=f'(t)(1-t)+f(t) ↓ (*) 方程式(*)が異なる3つの実数 解をもつ y=(3t²+2at+b)(x−t)+t³+at²+bt :: y=(3t²+2at+b)x-2t³-at² これが点 (10) を通るのは 0=-2t°+(3-a)t2+2a+bを通って接線をいく to your it のときである. 方 接線が3本存在する 225 yi f y=f(t)₁ KHUT

回答募集中 回答数: 0
数学 高校生

この問題の最後のところで、y=xに関して対称だから cos2分のπ−θ=sinθ、、、 となるのがなぜかよくわかりません 教えてください!お願いします🙇‍♂️🙇‍♂️

66 加法定理 (1) 一般角に対して sine, cose の定義を述べよ (2) (1) で述べた定義にもとづき,一般角α, βに対して、 sin(a+β)=sina cos β + cos asinβ os (a+β)=cosacos β-sinasin / COS を証明せよ. 精講 (1) Oを始点とする動径を考えます. 0からの距離がrで始線とのなす 角が0の動径上の点Pの座標を(x,y) とする. Pにより決まる値 y = sine), (=cos0) はの値,すなわちPの位置とは無関係に0のみ で決まる値であることを主張することが大切です. 1つの動径上に異なる点A, A' をとりこの2 点からx軸上に下ろした垂線の足をそれぞれH, H'とすると より △OAH SOA'H' AH_A'H' = OA OA' OH OH' OA OA' IC x 15 50 r r G □ H H' 18 です. A の座標を(x, y), r=OA とするとそ れぞれの値は であり,これは A'の位置に無関係に決まる値で す。 (2) (1) で述べた定義にもとづき証明せよ。」と なっているところに注意を払います (1) で初めて sin 0, cos が定義されたのですから, sin'0+cos20=1 解法のプロセス (1) 0 を始点とする動径上の点 P(x, y) に対して yI r² r 732 1=50ARS yI , (r=OP) r はPの位置に無関係に決まる 値である 7502 1750 などの証明の途中で必要とされる定理はすべて証 明してから使うべきです. 147 (東大) X 回転しても距離は不変 (nie Reo) Curle 義可能である (2) A(cosa, sina), B(cos β, sin β) をとる 凸 A, B を原点のまわりに -β 回転させ, A',B'とする 凸 ↓ の関数として定 ↓ AB=A'B'

回答募集中 回答数: 0