学年

教科

質問の種類

数学 高校生

数Bの質問です! 86の(2)の問題を分かりやすく教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

2-~- [1] P(0≦x≦1.5) [2] P(0.5≦x≦1) (2)(x)=1- ( 基本 85 めよ。 x (0≤x≤2) [1] P(0.45XS1.2) [2] P(0.5≤x≤1.8) 確率変数 Zが標準正規分布 N (0, 1) に従うとき, 次の確率を求 P(0≤Z≤3) P(-1≤Z≤2) (2) P(1≤Z≤3) (5) P(ZZ-2) (3)P(Z1) 基本 86 よ。 確率変数X が正規分布 N(10,52) に従うとき、次の確率を求め (1) P(X≦10) (2) P(10≦x≦25) (4) P(X≧20) (5) P(X ≤16) (3) P(5X15) テーマ 37 正規分布の利用 応用 ある市の男子高校生500人の身長の平均は170.0cm,標準偏差は5.5cm である。 身長の分布を正規分布とみなすとき,次の問いに答えよ。 (1) 身長が180cm 以上の男子は約何人いるか。 (2) 身長が165cmの男子は,500人中の高い方から約何番目か。小数第1 位を四捨五入して答えよ。 考え方 身長をX, m=170.0, a=5.5 として,Z= 第2章 統計的な推測 解答編 -123 B5 (1) P(03)=P(3)=0.49865 (2) P(1SZS3)=p(3)-(1) 0.49865-0.3413=0.15735 (3) P(Z≧1)=0.5-(1)=0.5-0.3413=0.1587 (4) P-152≤2) 204 =P(-1≤ZS0)+P(OZ≦2) =p(1)+p(2)=0.3413+0.4772=0.8185 (5) P(ZZ-2)=P(-23Z30) +0.5 (2)+0.5 800x0.4772+0.5-0.9772 86ZX-10 とおくとは標準正規分布 N(0.1) に従う。 出 (1)X10 のとき z=10-10 =0 よって 5 P(X≤10)=P(Z≦0) = 0.5 (2) X10 のとき 20, X=25のとき Z- よって 25-10-3 P(10 X≤25) P(0≤Z≤3) =p(3)0.49865 5-10 (3) X=5のとき Z= =-1,5 X=15 のとき 2= 15-10 よって P(5SX≦15)=P(−1≤Z≤1) =P(-1SZS0)+P(0≤Z≦1) =2p(1)=2x0.3413=0.6826 数学B 基本練習 正規分布表 -p (w) .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0359 0.0675 0.0714 0.1103 0.0753 0.1141 0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.1 0.0398 0.0438 0.0478 0.0517 0.0636 0.0557 0.0596 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1064 0.1026 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 20.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1879 0.1736 0.1700 0.1844 0.1772 0.1808 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 1.0 0.3413 0.3438 0.3461 0.2823 0.2794 0.2764 0.2852 0.4177 0.4319 0.4441 0.4761 0.4767 0.4162 0.4147 0.4279 0.4292 0.4306 0.4394 0.4406 0.4418 0.4429 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0:4699 0.4706 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643 2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736 2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807 2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861 3.0 0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 0.49893 0.49897 0.49900 1.5 0.4332 0.4345 0.4357 0.4370 0.4382 解答 身長をXcm とする。 確率変数X が正規分布 N (170.0 5.5) に従うと き, z=X-170.0 X-mを考える。 (4) X=20 のとき Z= よって 20-10 5 =2 5.5 は標準正規分布 N (0, 1) に従う。 (1) X=180 のとき, Z=- 180-170.0 (5) X=16 のとき Z= よって PX≧20)=PZ2)=0.5-p(2) =0.5-0.4772=0.0228 16-10-12 2457.19 5.5 ≒1.82 であるから 500×0.0344=17.2 であるから P(X≧180)=P(Z≧1.82)=0.5-p(1.82)=0.5-0.4656=0.0344 P(X16)=P(Z1.2)=0.5+P(0≤ 1.2) = 0.5+p(1.2) = 0.5 0.3849 =0.8849 約 17人 答 87 得点を X点とする。 確率変数X が正規分布 (2) X=165 のとき Z=- 165-170.0 X-56 5.5 ≒0.91 であるから N(56, 124) に従うとき,Z=- は標準正規 12 P(X≧165)=P(Z≧-0.91)=p(0.91)+0.5=0.3186+0.5=0.8186 分布 N(0, 1)に従う。 80-56 500×0.8186=409.3 であるから 約 409 番目 答 (1) X=80 のとき Z= =2 12 よって P(X280)=P(Z2)=0.5-p(2) =0.5-0.4772=0.0228

解決済み 回答数: 1
数学 高校生

赤線部のように分かるのはなぜですか?🙇🏻‍♀️

基礎問 77 中線定理 小 △ABCにおいて,辺BCの中点をMとし, AB=c, BC=2a, CA = 6 とおくとき (1) cos B を a, b c で表せ. (2)AM を a, b c で表せ. (3) AB'+AC2=2 (AM2+BM2) が成りたつことを示せ . |精講 B M a b (2) 三角形の内部に線が1本ひいてあると, 1つの角を2度使うこ とができます. この問題でいえば,∠B を △ABC の内角と考え て(1)を求め,次に △ABMの内角と考えて(2) を求めることがそれ にあたります。 (3)この等式を中線定理 (パップスの定理) といいます。この等式は,まず使 えるようになることが第1です. 使えるようになったら自力で証明すること を考えることも大切です.また,証明方法はこれ以外に,三平方の定理を使 う方法や数学IIで学ぶ座標を使った方法, 数学Bで学ぶベクトル を使う方法などがあります。 HA 図中の線分 AM を中線といいますが,この線分AM を 2:1 に内分する 点Gを△ABCの重心といい (51), これから学ぶ数学Ⅱ の 「図形と方程 式」,数学Bの 「ベクトル」 でも再び登場してきます。 解答 (1) △ABCに余弦定理を適用して 4a²+c²-b2_4a²+c²-b² cos B= 2.2a.c 4ac (2)△ABM に余弦定理を適用して AM2=c2+α2-2cacosB=c2+a- 4a2+c2-62 2 62+c2-202 2 (3)a=BM,b=AC,c=AB だから, 2AM²=AC2+AB2-2BM2 よって, AB'+AC2=2(AM2+BM2)

解決済み 回答数: 1