学年

教科

質問の種類

数学 高校生

なんでこの問題って場合分けしないといけないんですか?

252 y=2sint-sint (0≧≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 重要 例題 160 媒介変数表示の曲線と面積 面 媒介変数によって,x=2cost-cos2t 6 y CHART & SOLUTION 基本 156 基本例題156 では,tの変化に伴ってxは常に増加したが, この問題ではの変化が単調でないところがある。 とする y2 この問題では点Bを境目としてxが増加から減少に変わり x軸方向について見たときに曲線が往復する区間がある。 したがって, 曲線 AB を y, 曲線 BC を y2 とすると 求め る面積Sは 右の図のように, t=0 のときの点を A, x座標が最大とな る点を B(t=tでx座標が最大になるとする),t=xのとoco きの点をCとする。 B i-3 0 1 A xx t=0 t=to 曲線が往復 している区間 (a>0) S=Sydx-Sy yi dx x0 ! ら と表される。 よって,xの値の増減を調べ,x座標が最大となるときのtの値を求めてSの式を立てる。 また,定積分の計算は,置換積分法によりxの積分からtの積分に直して計算するとよい。 解答 図から,0≦t≦πでは常に 2x-1200=xb (-xhie) logob log3-2 『 y≥0 onial また y=2sint-sin2t=2sint-2sintcost -Dial =2sint(1-cost) inf. Ost≤ DE sint≧0, cost ≦1 から Dy=2sint(1-cost)≥0 としても, y≧0 がわかる。 よって, y=0 とすると sint = 0 または cost=1 0 から t=0, π 次に, x=2cost-cos 2t から から dxc == -2sint+2sin2t dt D =2sint+2(2sintcost) (小平 (八 =2sint(2cost-1) << において x=0 とすると, sint>0 で dt あるから t 20 π ・・・ cost= 2 ゆ t= + 3 0 「 よって、xの値の増減は右の表のようになる。分するよう! 1 XC -> 32 T ← B

解決済み 回答数: 1
数学 高校生

数学cについてです (3)番です f(x)のxにそのままh(x)を代入して、回答のようにh(x)= 以下 になっていて合ってはいたのですが、解説を見ると、解き方が全く違っていました 読んでみても、全く理解できません 逆関数がどうとかあありますが、何故このようなことをしなく... 続きを読む

31次分数関数 f(x)=- 2x+1 3x+1' 9(x)= 4x+2 5x+1 また,分数関数h(x)が, h(x) キー h(x)=(3) となる. とすると,(f(x))=f(g(x))=[2]]となる。 となる』に対して,f(h(x)) =xを満たすとき, 3 (山梨大医(後) (a~d は実数の定数)の形の関数を1次分数関数という. 1次分数関数とは 合成関数 ax+b cx+d (D) 合成関数g(f(x)) を求めるときは,g(x)のxをf(x)にしたものを計算すればよい. g(f(x)) は, gof(x) または (gof) (zr) と書くことがある. g (f(x)) f (g(x))は一般に異なる関 数である (一致することもある) f (x), g(x)が1次分数関数のとき,g (f(x)),f(g(x))は1次分 数関数になる.(ここでは、便宜上, 1次関数なども1次分数関数に含めている CECOME 逆関数について 1次分数関数の逆関数は1次分数関数になる.また,一般に,f(x)の逆関数を f-1(x) とすると,f-1(f(x))=xf(f-l(x)) =xである. 解答 2x+1 4- +2 3x+1 4(2x+1)+2(3x+1) 14x+6 (1) g(f(x))= = 2x+1 5(2x+1)+(3+1) 13x+6 5- +1 3x+1 (土) この問題では,定義域は考えな してよい。 =(1)77d 4x+2 2. +1 5x+1 (2) f(g(x))=- === 3. 4x+2 5x+1 +1 2(4x+2)+(5x+1) 13x+5 3(4x+2)+(5x+1) 17x+7 (3) f(x) の逆関数を f-1(x) とする. f-1(f(h(x)))=f(x)より h(x) =f-1(x)である。 2x+1 3x+1 =yとおいて』をyで表すと, 2x+1=y(3+1) より (3y-2)x=-y+1 x=y+1 3y-2 [ェとyを入れかえて] h(x)=-x+1 3x-2 (1)と(2)は異なる. この式を省略し,f(h(x)) = だからん(x) =f-1 (x) と書い さもかまわないだろう。 h(x)=-3(3x-2) h(x)=- (これが値域) 2/23 3 3 演習題(解答は p.89 ) -1 <x<1を定義域とする関数f(m) エーカ

解決済み 回答数: 1