学年

教科

質問の種類

数学 高校生

⑵のtanΘ=tan 2✖️tan2分のΘの次の変形がわかりません。なぜこうなるのか教えていただきたいです🙏

纈羽 11 <<x, sino=2のとき、 (1キ±1)のとき、次の等式が成り立つことを証明せよ。 (2)t=tan anma 21 sin@= cos 0= 1+12, 1+t2" tan 0= 2t 1-t2 (1) S 指針 (1)2倍角、半角の公式を利用する。 また sin 20, tan p.247 基本事項 の値を求めるには、COS8の 値が必要になるから、かくれた条件 sin'0+ cos'01 を利用して、この値も求め ておく。 (2)02-22 であるから、2倍角の公式を利用。tan0 →coso の順に証明 する。 tan と coseが示されれば, sin0 は sin0=tanAcos0 により示される。 (1) cos20=1-2sin20=1-2・ T << であるから 100 32 18 7 =1 cos0=-√1-sin'Q=- 1 移るような 3 ゆえに π π 日 << より 4 2 2 1-cos よって tan sin20=2sinOcos0=2. < < であるから 1+cos 0 √ 5-4 5 = 25 25 32 35 == 4 0は第2象限の角であ るから COSA<0 5S200 4-5 24 25 225 指針 解答 解答 0 tan 5+4 =3 hiaS-I- 2 tan (2) tantan 2• 02 0 2 2t = =- (t±1) 200 1-tan²- 0 1-t2 2 日 1 1+tan². 0 1 2 から COS 2 0 COS2- 2 26 1+tan². 1+t2 2 よって cosO=cos2=2cos2- 0 0 2 -1= 1-t2 点が 2 1+t -1- = ゆえに sin0=tan0cos0= 2t 1-t2 2t • conia(1-12 1+1² 1+12 = 1 5+4 V 5-4 = √9 晶検討 sin=s, cost tan1/2=1=12 1+2 これを証明する等式の 右辺に代入して s2+c2 = 1 などから、左 辺を導くこともできる。 おくと tan

解決済み 回答数: 1
数学 高校生

解答は私が(ⅲ)で書いてあるところをcos²θで書いてあるんですけど、私のやり方の(ⅰ)〜(ⅲ)でも最終的に共通範囲を求めるとsinθ=1は含まない形になっているのですが、丸になりますか?? お願いします🙇‍♀️

148─数学Ⅰ 練習 0°≦180° とする。 xの2次方程式x2+2(sin0)x+cos'0=0が, 異なる2つの実数解を 151 それらがともに負となるような母の値の範囲を求めよ。 f(x)=x2+2(sin0)x+cos20とし, 2次方程式f(x)=0の判別 ①グラフ利用 式をDとする。 2次方程式f(x) = 0 が異なる2つの負の実数 D, 軸, f(k) に 解をもつための条件は,放物線y=f(x) がx軸の負の部分と, 異なる2点で交わることである。 すなわち、次の [1], [2], [3] が同時に成り立つときである。 [1] D>0359180 [2] 軸がx < 0 の範囲にある (軸)<0 [3] f(0) > 0 また, 0°0180°のとき 0≦sin0≦1…... ① D [1] 4 -=sin20-1 cos20=sin²0-(1-sin20) =2sin20-1=(√2 sin0+1) (√2 sin0-1) 1 D> 0 から sin < 1 - <sine.. ② 2√2 [2] 放物線の軸は直線x=-sin 0 であるから -sin0 < 0 よって [3] f(0) >0 から cos²0>0 すなわち cos 0=0 sin0> 0 ③ 0° 0≦180°であるから 0+90°... ① ② ③ の共通範囲を求めて ..... ④ 1/12 <sin01 0°≦180°であるから 45°<<135° ④に注意して, 求めるの値の範囲は 45°<0<90° 90°<0 <135° 9 YA 135°1 45 -1 0

解決済み 回答数: 1