学年

教科

質問の種類

数学 高校生

(1)です。 平方完成まではわかるのですが最大値とXの求め方がいまいちわかりません。 よろしくお願いいたします。

64 第3章 2次関数 基礎問 37 最大 最小 (Ⅲ) 小 実数x, yについて, x-y=1のとき, x-2y2の最大値と そのときのxyの値を求めよ. (2)実数x, y について, 2x+y2=8 のとき, '+y2-2x の最大 値、最小値を次の手順で求めよ. (i)x+y-2.x を x で表せ. (ii) xのとりうる値の範囲を求めよ. () r'+y2-2.x の最大値、最小値を求めよ. 次の3つ (3) y=x+4x+5x2+2x+3 について,次の問いに答えよ (i) x2+2x=t とおくとき, y を tで表せ. (ii) −2≦x≦1 のとき, tのとりうる値の範囲を求めよ. (Ⅲ) −2≦x≦1 のとき,yの最大値、最小値を求めよ. 見かけは1変数の2次関数でなくても,文字を消去したり,おきか 精講 えたりすることで1変数の2次関数になることがあります。このと き,大切なことは,文字の消去やおきかえをすると 残った文字に範囲がつくことがある 脳はな になる ことです. これは2次関数だけでなく、 今後登場するあらゆる関数でいえるこ とですから ここで習慣づけておきましょう. (1)x-y=1より, y=x-1 解答 2-2y2=x2-2(x-1)2=-x+4x-2 =-(x-2)2+2 xはすべての値をとるので, 最大値 2 このとき,x=2,y=1 (2)(i) y2=8-22 より x² + y² = 2x = x² + 8 = ? r² = ?r- 平方完成は28

解決済み 回答数: 1
数学 高校生

数学の二次関数の決定について質問です。 写真一枚目の(2)がわかりません。 私の回答は写真2枚目なのですが、どこが間違っているのかわかりません。答えが違うのでどこかが必ず間違っていると思うのですが、何度計算しても正解にたどり着きません。私は、基本形を使わずに一般形を使って問... 続きを読む

基本 例題 94 2次関数の決定 0000 2次関数のグラフが次の条件を満たすとき, その2次関数を求めよ。 (1)頂点がx軸上にあって, 2点 (0, 4), ( - 4,36) を通る。 ( (2) 放物線y=2x2 を平行移動したもので,点 (2,4) を通り,頂点が直線 y=2x-4上にある。 指針 (1),(2) ともに頂点が関係するから、頂点のx座標をとおいて, 基本形 y=a(xb)+α (1) 頂点がx軸上にあるから g=0 からスタートする。 (2)平行移動によってx2の係数は不変。 したがって, a=2である。 また、頂点(b,g)が直線 y=2x-4上にあるから g=2ヵ-4 (1) 頂点がx軸上にあるから, 求める 2次関数は 頂点の座標は (p, 0) 解答 y=a(x-p)² と表される。 ...... このグラフが2点 (0, 4), (-4,36) を通るから ap²=4 * S (1) ①, a(p+4)²=36 ② ① ×9 と ② から lap=ap+4)2 α≠0 であるから 9p2=(p+4)2 整理して よって (p+1)(2)=0 -p-2=0 これを解いて p=-1,2 ①から p=1のとき a=4, p=2のとき α=1 したがって y=4(x+1), y=(x-2)2 (y=4x2+8x+4, y=x2-4x+4でもよい) (2)放物線y=2x2を平行移動したもので,頂点が直線 y=2x-4上にあるから,頂点の座標を(p2p4) とす ると, 求める2次関数は 4(-4-p)²=(p+4)² ① × 9 から 9ap^=36 これとa (p+4)=36か 5 9ap²=a(p+4)² α≠0 であるからこの 両辺をαで割って 9p²=(p+4)² 右辺を展開して 9p=p2+8p+16 整理すると p²-p-2=0 y=2(x-p)'+2p-4 とされる。 ****** ① このグラフが点 (24) を通るから 2(2-p)²+2p-4=4 y-2- 整理して p2-3p=0 よって p=0,3 2 p=0 のとき, ①から y=2x2-4 p=3のとき, ①から y=2(x-3)'+2 (y=2x-12x+20 でもよい y=2x2-4 0 /23 y=2(x-3)2+2

解決済み 回答数: 2