学年

教科

質問の種類

数学 高校生

数学1Aです! (タ)の求め方がわかりません。図の書き方が分からず悩んでいます。特に蛍光ペンのところがわからないです…どなたかよろしくお願いします🙇‍♀️

数学Ⅰ (2)太郎さんの住んでいる街にはK電鉄のA 駅, B 駅, C駅があり, A駅とB駅の 間の線路はまっすぐである。 「STATION A 駅 3駅の位置関係は A駅とB駅の間の直線距離が13km 駅 数学Ⅰ (i) 太郎さんはスマートフォンを持って電車に乗り, A駅からB駅まで移動した。 出発時にアプリに表示されていたのはA駅のみであったが, 出発からちょうど 分後にアプリに ソ ソ の解答群 STATION 10000 +++ B 駅 A駅とB駅の2駅のみが表示された ① A駅とC駅の2駅のみが表示された ② A駅とB駅とC駅の3駅が表示された (i) 1年後にC駅が移転し、 移転後の3駅の位置関係は B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が12km である。 また, 近隣に他の駅はない。 太郎さんのスマートフォンには最寄り駅が表示されるアプリが入っている。 ただ し,最寄り駅とは,スマートフォンからの距離が最も近い駅のことである。 そのア プリでは, 最寄り駅が複数ある場合はすべての駅が同時に表示される仕様になって いる。 以下では,駅および太郎さんがスマートフォンを持って乗っている電車は同じ平 面上の点とみなす。 また, A駅からB駅まで運行する電車はA駅とB駅を結ぶ線分上を動くものと し, その速度は加速・減速を無視し, つねに時速78km であるとする。 A駅とB駅の間の直線距離が13km B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が10km となった。 C駅の移転後に, 太郎さんはスマートフォンを持って電車に乗り, A駅からB 駅まで移動した。 このとき, アプリに複数の駅が最初に表示されるのは,出発か らおよそ タ 後である。 その後、 再び複数の駅が表示されるのは,B駅に到 着するおよそ チ 前である。 タ の解答群 3分46秒 3分56秒 ② 4分6秒 ③ 4分16秒 C駅 12 km 5km チ の解答群 AR 13km B 駅 ⑩ 2分40秒 ① 2分55秒 ②3分10秒 ③3分25秒 (数学Ⅰ第2問は次ページに続く。) 31

回答募集中 回答数: 0
数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分がよく分かりません 詳しく教えていただけると有難いです💦

基礎問 68 第3章 いろいろな関数 40 逆関数 f(x)=ax-2-1 (a>0.22)とするとき、次の問いに答えよ。 ((1) y=f(x)の逆関数 y=f(x) を求めよ。 エーエ (2) 曲線 C:y=f(x) と曲線 C2y=f-' (z) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C1, C2 の交点のx座標の差が2であるとき, αの値を求めよ。 精講 〈逆関数の求め方〉 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し,xとyを入れかえればよい 〈逆関数のもつ性質> Ⅰ. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは,直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。この基礎問では,IIが ポイントになります。 解答 (1) y=√ax-2-1 とおくと, √ax-2=y+1 リーェに で交わる ry-f よって すな 範囲 求め そこ この (3) よって, y+1≧0 より, 値域はy≧-1 ここで,両辺を2乗して 大切!! ax-2=(y+1)2 . x=11 (y+1)²+² (y≥−1) a よって、f(x)=1/2(x+12+2/2/(x-1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」 とはかいていないので, 「x≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、xの範囲, すなわち, 定義域が「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません. (2) y=f(x)とy=f(x)のグラフは,凹凸が異なり,かつ,直線 253

回答募集中 回答数: 0
数学 高校生

-2は何から求めるのでしょうか?

基本 例題 10 逆関数の求め方とそのグラフ 00000 27 次の関数の逆関数を求めよ。 また、そのグラフをかけ。 (1) y=logx (2) y= 2x-1 (x20 x+1 p.26 基本事項 1 1個 CHART & SOLUTION 2 逆関数 について解いてとの交換 ① 定義域と値域に着目 ② グラフは直線 y=x に関して対称 逆関数の求め方 ① 関係式 y=f(x) を x=g(y) の形に変形。 ・・・ 0 ② xyを入れ替えて, y=g(x) とする。 ③ g(x)の定義域は、f(x) の値域と同じにとる。 (2)定義域に注意。 → まず, 与えられた関数の値域を調べる。 逆関数と合成関数 xの値がただ とき、変数 x (x)です。 f(x) (b, a) y=f(x P(a,b) (2)y= 含まれてい x) と(y) 解答 (1) y=logx をxについて解くと x=3" - xとyを入れ替えて y=3x グラフは右図の太線部分。 YA y=3 数学Ⅱの復習 y=x a>0, a≠1 のとき (E+ y=logax 3 y=log3x 2x-1 x+1 1 (x≥0) ...... ①を x=a³ 指数関数 y=α は 対数関数 y=10gax の逆関数。 であるか 0 1 3 x 2x-1_2(x+1)-3 = 3 x+1 x+1 変形して y=- +2 x+1 ①の値域は -1≤y 2 ①から (y-2)x=-y-1 y=2 であるから CK 4, x+1 (-1≤y<2) YA y= x+1 x-2 2x-1 y= x+1 2=0のときy=-1 ← x=0 のとき y=-1 ①の分母を払って y(x+1)=2x-1 から xy-2x=-y-1 +2 x+1 1 xとyを入れ替えて 2-1 OI 12 x+1 y=- (-1≤x≤2) x-2 グラフは右図の太線部分。 y=x -1-2 x-2 x+1__(x-2)-3 x-2 -1 (x) (Vest) x-2 I=(x)\ 1 定義 PRACTICE 10° S+S J 次の関数の逆関数を求め, そのグラフをかけ。 [(3) 湘南工科大] (1)y=2x+1 x-2 (2) y= (x≥0) x+2 (3)y=-- ---x+1(0≦x≦4) (4)y=x^2(x≧0) (x)(・)(1)

回答募集中 回答数: 0