学年

教科

質問の種類

数学 高校生

この問題の エオで解答2ページを見た時に矢印の変換がなぜそうなるかわからないです(>_<) なぜ上の式からBは-4にならないことがわかるのですか? 教えてください!!!!

例題太郎さんと花子さんは方程式の解の個数に関する問題について話している。 二人の会 話を読んで、下の問いに答えよ。 問題 3次方程式(x-2)(ar2+bx+4)=0 (a,bは定数) が異なる二つの実数解をもつと きαをの式で表せ。 太郎: この3次方程式は (1次式)×(2次式)=0の形になっているから,x-2=0より,一つの実 数解がx=2だとわかるよ。 花子: そうすると, 2次方程式 ax+bx+4=0が残りの一つの実数解をもてばいいから, (i) 2次方程式 ar²+bx+4=0がx=2以外の重解をもつ場合 (ii) 2次方程式 ar2+bx+4=0がx=2ともう一つの異なる解をもつ場合 を考えればいいね。 まずは (i) の場合を考えてみると・・・ 判別式を利用して, a= となるわ イウ 太郎: だけどこれだと2次方程式の解がx=2の場合も含んでいて, 2次方程式の重解がx=2 だと,3次方程式の解は一つになってしまうから 2次方程式の解がx=2となるときを除 外しよう。 花子: そうか。 つまり6 キエオだね。 太郎: その前に他に何か忘れていることはなかったかな? 花子: そういえば, 「3次方程式」 と書いてあるから・・・。 太郎: あっ! そうだ! ar+bx+4は必ず2次式になるから,αキ カだね。 次は, (ii) の場合を考えよう。 a を6で表した式や条件はキ になるね。 (1) ア イウエオ カに当てはまる数値を答えよ。 (2) キに当てはまるものを、次の①~③のうちから一つ選べ。 b2 a= 6-4, 0 16 ①a< 62 16 6-40 a=-(6+2), (6+2), 6-2 11- 11/12 (6+2), 6-4, -2 数学- 26

回答募集中 回答数: 0
数学 高校生

この問題の(3)の解説(2ページの丸で囲んでる部分がよくわからないです… 何故Xの得点は(2-5)と(8-5)ばかりなのでしょうか? 3点や4点もグラフにあるのに何故省かれているのでしょう、、 教えてください!

step2 鉄則を使う 下の表Ⅰは、20人の生徒が行った2つのゲームX,Yの得点結果をまとめたものである。 表の横軸はXの得 点を,縦軸はYの得点を表し、表中の数値は,Xの得点とYの得点の組み合わせに対応する人数を表している。 ただし,得点は0以上10以下の整数値をとり、空欄は0人であることを表している。例えば,Xの得点が 6点でYの得点が7点である生徒の人数は2である。 また,IIはXとYの得点の平均値と分散をまとめたものである。 ただし, 表の数値はすべて正確な値であり、 四捨五入されていない。 以下,小数の形で解答する場合は、指定された桁まで解答せよ。 #I 表Ⅱ (点) 10 X Y 9 1 8 7 2 232211 2 平均値 A 6 2 1 分散 4.00 7.0 B Y 5 4 1 3 2 1 0 012345 6 7 8 9 10 X (点) (1)20人のうち, Xの得点が5点の生徒はア人であり, Yの得点がXの得点以下の生徒はイ人である。 . (2)20人について, Xの得点の平均値Aはウ エ点であり,Yの得点の分散Bの値はオ である。 カキ (3)20人のうち, Xの得点が平均値 ウ エ点と異なり,かつ, Yの得点も平均値 7.0点と異なる生徒 はク人である。 20人について, Xの得点とYの得点の相関係数の値はケコサシである。 ア( ( ウ エ オ( )力( キ ク( ケ ( ) コ サ ) シ(

回答募集中 回答数: 0
数学 高校生

数Ⅲ微分 丸で囲った sinxは単調増加であるから、という条件はどういう意味なのでしょうか? 無くてもtで置き換えてるのでできる気がするのですが…… 14番です。お願いします。

6 Check! Step Up 396 末 第6章 微分法の応用 (1)f'(x) =2me" sin(xx) +2eπCOS (πx) =2ne™x{sin(x)+cos(x)} *sin(x++) =2√2 resinx+ -1<x<1 £9,-*<**+*<z したがって、f'(x) = 0 とすると, x+4=0. π 1 より。 x=- 4'4 f(x) の増減表は次のようになる。 x -1... ..... 1 4 0 + 0 f'(x) f(x) よって 大値 ed(x=22) 極小値 -√/2e-f(x=-1/2) (2) f'(x)=1e-x+(x+1) (−2ax)e-ax2 =(-2ax2-2ax+1)e-axs f'(x) = 0 とすると, e-x2 = 0 より 2ax²-2ax+1=0 2ax2+2ax-1=0 ...... ① f(x) が極値をもつための条件は、 ①が解をもち, その 解の前後で ① の左辺の符号が変化することである. a=0 のとき, -1=0 となり不適 したがって, a=0 | 積の微分 A (e**)'=e** (xx)'= nex {sin(x)}'=cos(x)(x) 三角関数の合成 COS(x) sin(x+4)=0 -√2e- 積の微分 1 <f'(x)=0 の両辺を e-ax で 割る. 第6章 微分法の応用 映画 397 Step Up 1 <x<1/2で異なる2つの実数解をもち、その直後で(x)の 考え方> (1) f'(x) =0 が 符号が変わるようなαの値の範囲を考える. の値の範囲を求める. (2) f'(x)=0 が 0<x<πで解をもち, その前後でf'(x)の符号が変わるような (1) f(x)=2cos2x-asinx =2(1-2sin'x) -asinx =-4sin'x-asinx+2 f'(x) =0 とすると, より, -4sin x-asinx+2=0 4sinx+asinx-2=0 ...... ① f(x) が極大値と極小値をもつための条件は,①が 一覧<x< に異なる2つの実数解をもち,その解の 前後で①の左辺の符号がそれぞれ正から負,負から正に 変化することである. sinx=t とおくと, であり,①は, 4t2+at-2=0 <x<1のとき,-1<t<1 2 <x<1においてsinxは単調増加であるから ②1<<1 に異なる2つの実数解をもつとき、 f(x) が極大値と極小値をもつ. g(t)=4t+at-2 とおくと, g(0)=-2<0 より, である. g(-1)>0 かつ g (1) > 0 g(-1)=4-a-2>0より, g(1)=4+α-2>0より, a<2 a>-2 2倍角の公式 cos20=1-2sin' では調査 -1 \0 6 であるから, f(x) が極値をもつための条件は, xについ よって, -2<a<2 ての2次方程式 ①が異なる2つの実数解をもつことであ る. f'(x)≧0 重解をもつときは, または f'(x) 0 となり極値 をもたない. (2) f(x)==sinx•sinx−(a+cosx)cost sin'x sin'x ①の判別式をDとすると,0 すなわち, a²+2a>0 a<-2,0<a よって, 求めるαの値の範囲は, a<-2, 0<a t 14 (1) 関数f(x) =sin2x+acosx (-2<x<2) が極大値と極小値をもつように定数a の値の範囲を定めよ. (2)関数f(x)=+COSX (0<x<z) が極値をもつように定数a(a≠0) の値の範囲を sinx 定め,そのときの極値を求めよ. -sin'x-acosx-cos' x acosx+1 sinx f'(x)=0 とすると, acosx+1=0 ...... ① f(x) が極値をもつための条件は,① が 0<x<πに 解をもち,その前後で ① の左辺の符号が変化することで ある. COSx=t とおくと, 0<x<πのとき, -1<t<1で あり,① は, at+1=0 ・・・② 0<x<πにおいて、 COS-xは単調減少であるから ② が1<t<1に解をもつとき,f(x)が極値をもつ. α≠0 より t=-- (i) a>0 のとき 1 a -1<--<0であるから, a -2 商の微分 (分母)=sin'x>0より,分~ 子についてだけ考えればよい. a>1 <a>0より, -a <-1 a>1

回答募集中 回答数: 0