学年

教科

質問の種類

数学 高校生

(1)数列の和から一般校を求めるやり方ですが このやり方だと、snとsn-1の差から公差を求めているので等差数列しかもとまらなくて階差や等比の場合にはもとまらなくないですか?

446 解答 0000 基本 例題 24 数列の和と一般項, 部分数列 |初項から第n項までの和SnがSm = 2n²-n となる数列{an} について (2) 和α+a+as+ +αzn-1 を求めよ。 p.439 基本事項 基本4 (1) 一般項an を求めよ。 指針 (1) 初項から第n項までの和Snと一般項an の関係は n≧2のとき Sn=a+a+ -) Sn-1=a₁ + a₂+. Sn-Sn-1= (1) n ≧2のとき +an-i+an an よって an=S-Sn-1 n=1のとき a1=S1 和 Smがnの式で表された数列については,この公式を利用して一般項an を求める。 (2) 数列の和 まず一般項 (第k項) をんの式で表す .... 第k項 .......+an-1 第1項、第2項,第3項, a1, a3, a5, a2k-1 であるから, an に n=2k-1 を代入して第k項の式を求める。 なお, 数列 a1, A3,A5, ....., azn-1 のように, 数列{an} からいくつかの項を取り除 いてできる数列を, {an}の部分数列という。 =4n-3 ① an=Sn-Sn-1=(2n²-n)-{2(n-1)²-(n-1)} また a=Si=2・12-1=1 ここで, ① において n=1 とすると よって,n=1のときにも ① は成り立つ。 したがって an=4n-3 (2)(1)より, 2-14(2k-1)-3=8k-7であるから ...... α=4・1-3=1 n atastat...... +a2n-1=22k-1=2 (8k-7) k=1 n k=1 = 8. n(n+1)=7n =n(4n-3) S=2²-nであるから Sn-1=2(n-1)²-(n- 初項は特別扱い am はn≧1で1つのボ 表される。 a2k-1 lan=4n-31 いてぃに2k-1を代 の公式を利用 n≧1でan=S-S-」 となる場合 例題 (1) のように, an = Sn-Sn-1 でn=1 とした値と α が一致するのは, Smの式でn= 検討 したとき So=0 すなわち n の多項式 Sn の定数項が 0 となる場合である。 もし、 Sn=2n²n+1(定数項が -S-S1-1=4n-3(n≧2))) り SPEE

回答募集中 回答数: 0
数学 高校生

グラフは書かなかったのですが大丈夫ですよね? (影で見にくくてすみません💦)

重要 例題 4次関数の最大・最小 (1) 関数y=x4-6x2+10 の最小値を求めよ。 (2)-1≦x≦1のとき,関数y=(x²-2x-1)^2-6(x2-2x-1)+5の最大値,最小 値を求めよ。 APME 1451 [(2) 類 名城大] 基本 77 o+xd+²x=( — 指針4次関数の問題であるが,おき換えを利用することにより, 2次関数の最大・最小の問題 に帰着できる。なお, ● = tなどとおき換えたときは,tの変域に要注意! (2) 繰り返し出てくる式x2-2x-1 を=t とおく。 -1≦x≦1におけるx2-2x-1の値域 がtの変域になる。 CHART 変数のおき換え 変域が変わることに注意 解答 (1) x2=t とおくと t≧0 yをtの式で表すと y=t2-6t+10=(t-3)² +1 t≧0の範囲において, y は t=3のとき 最小となる。このとき x=±√3 よって x=±√3のとき最小値1 (2)x2-2x-1=t とおくと厚さ t=(x-1)2-2 ! -1≦x≦1 から -2≦t≦2 yをtの式で表すと y=²-6t+5=(t−3)²−4 (2①の範囲において,yは t=-2 で最大値 21, t=2で最小値-3 をとる。 t=-2のとき ゆえに よって t=2のとき ゆえに よって 13 (x-1)-2=-2 (x-1)²=0> x=1 (x-1)²-2=2 (x−1)²=4 x=-1,3 満たす解は x=-1 月21 Ay 10% 1 O 3 最大1 y=t2-6t+10 最小 12 01 ・1 -2- YA 最 √5 2 2013 0000 t I ◄()² ≥0 US このかくれた条件に注意。 y=(x2)2-6x2 +10 の2次式基本形に。 sustatous JUMSX 21 人外 <t=3つまりx2=3 を解く x=±√3 COOTJAHISPX SEX 137 <t=x²-2x-1 (-1≦x≦1) のグラフからtの変域を判 断。 JO (x-1)=4から x-1=±2でもよい。 この確認を忘れずに。 141 31 10

未解決 回答数: 0
数学 高校生

各辺を加えてから不等号の=が消えているのはなぜですか?

基本例題 33 不等式の性質と式の値の範囲 (2) 0000 x,yを正の数とする。 x, 3x+2y を小数第1位で四捨五入すると,それぞれ6, 21 になるという。 (1) xの値の範囲を求めよ。 (2) yの値の範囲を求めよ。 まずは、問題文で与えられた条件を、 不等式を用いて表す。 指針 例えば,小数第1位を四捨五入して4になる数は, 3.5 以上 4.5 未満の数であるから, aの値の範囲は3.5 ≦a < 4.5である。 解答 (2) 3x+2y の値の範囲を不等式で表し, -3xの値の範囲を求めれば,各辺を加えるこ とで 2y の値の範囲を求めることができる。更に,各辺を2で割って、yの値の範囲 を求める。 (1) x は小数第1位を四捨五入すると6になる数であるか ら 5.5 ≦x<6.5 (2) 3x+2yは小数第1位を四捨五入すると21になる数で あるから 20.5 ≦3x+2y<21.5 ① の各辺に-3を掛けて -16.5≧-3x> -19.5 -19.5<-3x≦-16.5 すなわち ②,③の各辺を加えて したがって 1<2y<5 各辺を2で割って 1/21<x</1/27 <ひく ar- ON 図 20.5-19.5<3x+2y-3x<21.5-16.5 xem người (*) 01-x8 II≤- H- 基本 32 YORUM 3x+2y-3x<21.5-3x 21.5-3x≦21.5-16.5(5) (M) STAT 15.5≤x≤6.4, (1) 5.5≤x≤6.5 などは誤り! ti 負の数を掛けると,不等 号の向きが変わる。 不等号に注意 (検討参照)。 正の数で割るときは, 不 等号はそのまま。 1 章 COTT 不等号にを含む・含まないに注意 検討 上の2yの範囲 (*) の不等号は, ≦ではなく < であることに注意。 例えば、 右側について VI>xas は ②の3x+2y<21.5 から ③の-3x≦-16.5 から 4 1次不等式 よって 3x+2y-3x<21.5-3x≦5 したがって, 2y < 5 となる (上の式の で等号が成り立たないから, 2y = 5とはならない)。 左側の不等号についても同様である。

未解決 回答数: 1