数学
高校生

グラフは書かなかったのですが大丈夫ですよね?
(影で見にくくてすみません💦)

重要 例題 4次関数の最大・最小 (1) 関数y=x4-6x2+10 の最小値を求めよ。 (2)-1≦x≦1のとき,関数y=(x²-2x-1)^2-6(x2-2x-1)+5の最大値,最小 値を求めよ。 APME 1451 [(2) 類 名城大] 基本 77 o+xd+²x=( — 指針4次関数の問題であるが,おき換えを利用することにより, 2次関数の最大・最小の問題 に帰着できる。なお, ● = tなどとおき換えたときは,tの変域に要注意! (2) 繰り返し出てくる式x2-2x-1 を=t とおく。 -1≦x≦1におけるx2-2x-1の値域 がtの変域になる。 CHART 変数のおき換え 変域が変わることに注意 解答 (1) x2=t とおくと t≧0 yをtの式で表すと y=t2-6t+10=(t-3)² +1 t≧0の範囲において, y は t=3のとき 最小となる。このとき x=±√3 よって x=±√3のとき最小値1 (2)x2-2x-1=t とおくと厚さ t=(x-1)2-2 ! -1≦x≦1 から -2≦t≦2 yをtの式で表すと y=²-6t+5=(t−3)²−4 (2①の範囲において,yは t=-2 で最大値 21, t=2で最小値-3 をとる。 t=-2のとき ゆえに よって t=2のとき ゆえに よって 13 (x-1)-2=-2 (x-1)²=0> x=1 (x-1)²-2=2 (x−1)²=4 x=-1,3 満たす解は x=-1 月21 Ay 10% 1 O 3 最大1 y=t2-6t+10 最小 12 01 ・1 -2- YA 最 √5 2 2013 0000 t I ◄()² ≥0 US このかくれた条件に注意。 y=(x2)2-6x2 +10 の2次式基本形に。 sustatous JUMSX 21 人外 <t=3つまりx2=3 を解く x=±√3 COOTJAHISPX SEX 137 <t=x²-2x-1 (-1≦x≦1) のグラフからtの変域を判 断。 JO (x-1)=4から x-1=±2でもよい。 この確認を忘れずに。 141 31 10
・例題88 2 (1) リ=4-6x+10より、パニとすると リ=ビー6t+10と表すことができる ( y=ピー6t+10 = (t-2-3t+9)+ =(t-3)+1 つまり t=3のとき最小値をとる。 t = x ²² F ²1 x ² = 3 したがっく X = I ③最小値をとる。 サ Date

回答

まだ回答がありません。

疑問は解決しましたか?