学年

教科

質問の種類

数学 高校生

(1)の問題に関して、チャート&ソリューションの9行目、y=k上に(2n-2k+1)個の点があるとはどういうことですか?

90 重要 例題 102 格子点の1 次の連立不等式の表す領域に含まれる格子点 (x座標, y である点)の個数を求めよ。 ただし, nは自然数とする。 (1) r≥0, y≥0, x+2y=2n CHART OLUTION 格子点の個数 0000 座標がともに 整数 (2) x≥0, y≤n², y≥x² MOITUIO の 直線xk または y=k上の格子点を求め加える...... 「不等式の表す領域」は数学IIの第3章を参照。 基本的 (1) n=1のとき n=2のとき 具体的な数を代入してグラフをかき, 見通しを立ててみよう。 n=3のとき yA ya YA x+2y=2・3 x+2y=2.2. -3 x+2y=2・1 Yo -2€ 2 -16 -10 1 0 2 3 0 2 3 4 5 n=1のとき 1+3=4, n=2のとき 1+3+5=9, (1) 解 n=3のとき 1+3+5+7=16 一般の場合については,境界の直線の方程式 x+2y=2n から x=2n-2y ………,0)上には(2n-2k+1)個の格子点 よって、 直線 y=k (k=n, n-1, が並ぶから (2n-2k+1)において, k=0, 1, ..., nとおいたものの総和が 求める個数となる。 び直 (2 J (2) n=1のとき n=2のとき n=3のとき A y y=x21 -yA y=x2+ (I-YA y=x -9 0 n=1のとき n=2のとき x 0 (1−0+1)+(1-1+1)=3, -4+ -1 x (4−0+1)+(4−1+1)+(4−4+1)=10, (9-0+1)+(9-1+1)+(9-4+1)+(9-9+1)=26 n=3のとき 一般(n) の場合については,直線x=k (k=0,1,2, n-1, n) E nとおいたものの総和が求める個数となる。 また、次のような, 図形の対称性などを利用した別解も考えられる。 (1)個の格子点が並ぶから,(n+1)において,k=0, 1, (1)の別解 三角形上の格子点の個数を長方形上の個数の半分とみる。 このとき、対角線上の格子点の個数を考慮する。 01- (2)の別解 長方形上の格子点の個数から 領域外の個数を引いたものと考える。

回答募集中 回答数: 0
数学 高校生

(3)の解説がわからないです! 精講に球面Cと直線lが異なる2点で交わるときOH<半径とありますがそれも分からないので教えて欲しいです!!

263 うる値の範囲を求めよ. (3) 球面Cと直線1が異なる2点P,Qで変わるようなαのとり 基礎問 262 第8章 ベクトル 168 球と直線 座標空間内に, 球面C:x+y+z=1 と直線があり、直線 1は点A(a, 1, 1)を通り, u = (1, 1, 1) に平行とする.また, a1とする。このとき,次の問いに答えよ. (上の任意の点をXとするとき,点の座標を媒介変数を 用いて表せ (2) 原点Oからに下ろした垂線との交点をHとする.Hの座 標をαで表し,OH を αで表せ. (2) Hは上の点だから, (1) を用いて OH=(t+a, t+1, t+1)と表せる. ここで,OH だから, OH・ü=t+a+t+1+t+1=3t+α+2=0 H 3 2a-2 た 1 t=-Q+2 このとき,t+α= 3 t+1=q+1 よって、(24/2g+q+1) 2a-2 -a+1 3 3 また, OH2=- 9 (29-2)2 =14/01(1-1)+1/2 (a+1)+1/18( (-a+1)2 (デ = (a-1)2 (4) (3) のとき,∠POQ= となるαの値を求めよ. 1 33 2点間の距離の公式 2 (1) A (No, Yo, Z0) を通り, ベクトル u = (p, q, r) に平行な直 a≧1 だから,OH=6l4-1= (3) OH<1 だから 6 3 √(a−1) √A²=\A\ 3 (a-1)<1 : 1≦a<1+k tu √6 2 ◆仮定に a≧1 がある 1 H 線上の任意の点をXとすると OX = (No, yo, zo)+t(p,g,r) とせます. (2)日は上にあるので, (1) を利用すると, OH がαと tで表せます。 そのあと, OH・Z =0 を利用して, t をαで表します. (3) 球面Cと直線が異なる2点で交わるとき OH<半径 が成りたちます. (4)POQ=2をOP・OQ=0 と考えてしまっては,タイヘンです. 0 それは,PとQの座標がわからないので, OP, OQを成分で表せないから です。座標やベクトルの問題では、幾何の性質を上手に使えると負担が軽く なります。 解答 (1)OX=OA+tu=(a,1,1)+(t,t,t)=(t+a, t+1, t+1) :.X(t+α, t+1, t+1) (4)POQ= だから, OH= √2 -(4-1)=- /3 3 a=1+ 2 2 ポイント 中心 (a, b, c), 半径の球面の方程式は 演習問題 168 (x-a)+(y-b)2+(z-c)2=r2 いい 168において, (1)POQ=7 となるようなαの値を求めよ. (2) 線分 PQ の長さが最大になる点Aに対して, 球面C上の動点R をとり, 線分AR を考える 線分ARの長さを最小にする点Ro の座標を求めよ. 第8章

回答募集中 回答数: 0