学年

教科

質問の種類

数学 高校生

数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです!

94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。

未解決 回答数: 1
数学 高校生

(1)がわかりません 解説お願いします🙇‍♀️

基本 例題 432通りの部分和S2n-1, S2n の利用 1 1 1 無限級数 1- + 1 1 + + 2 4 2 3 3 4 75 00000 ・・・について ① (1) (1)級数①の初項から第n項までの部分和をSとするとき, S2n-1, S2 をそれ ぞれ求めよ。 (2) 級数① の収束, 発散を調べ, 収束すればその和を求めよ。 指針 (1) San-1が求めやすい。 San は Sun = Sui+(第2n項)として求める。 基本42 (2) 前ページの基本例題42と異なり,ここでは()がついていないことに注意。 このようなタイプのものでは,S" を1通りに表すことが困難で, (1) のように, San-1, S2n の場合に分けて調べる。 そして、次のことを利用する。 [1] limS27-1= limS2 = Sならば limS=S n→∞ n→∞ [2] lim S2n-1≠lim S2 ならば 110 n10 n→∞ {S} は発散 はり立つ。 "(+b) (1) S2n-1-1-- + 解答 Buta = 1 1 1 1 + 2 2 3 3 + 1-(12/28-1/2)-(13-1/3)-(一号) =1 n n+1 n n Job 部分和 (有限個の和) なら ( )でくくってよい。 参考 無限級数が収束す れば,その級数を、順序を 変えずに任意に() でく くった無限級数は,もと の級数と同じ和に収束す 1 1 S2n=S2n-1- =1- -2 n+1 n+1 (2)(1) から よって n→∞ したがって、 無限級数は収束して, その和は1 ることが知られている。 n→∞ 81U limS2n-1=1, limS2n=lim1- n→∞ limS=1 *** +*(1+2)--

解決済み 回答数: 1