学年

教科

質問の種類

数学 高校生

286.287 答えをまとめて書く場合と分けて書く場合の見分け方などありますか?? どうして分けるのか分かりません💦

13 17 286 (1) 0≦0 <2πの範 囲で, 6 6 1 sino = S+x 2 と 6 13 72 17 なる 0 の値は 12" 11 (a) 7 6π sin を用いて, sin 次方程式をつくる。 0 = π, 11 6 6 より, 与えられた方 の値の範囲は よって、上の図から不等式を満た π 11 0 π 6 n0-1=0 (11)とお 20 =0 =0 (2)002の範 囲で, OP. O coso= √√2 1/ と R なる 0 の値は π 7 0 = π 4'4 で cose √3 2 となる0の値は 0 = 656 π, T は76図 π 52-76 y なる E よって、上の図から不等式を満たす日 の値の範囲は 5 7 289 0 π 287 (1) 002 の範 囲で, √3 sin0 = - 2 となる0の値は √√3 4 5 2 0 = π, π 3 3 よ の 3 π り,与えられた方 10 2 囲で, 2-3 =0+5=0 √3 1533 ら sing = -1 よって、上の図から不等式を満たすら の値の範囲は 7 π A SOSI 4 TO UN (3)2sin-√30より の sinė≥ 2 0≦02πの範 よって、上の図から不等式を満たす の値の範囲は 4 5 0≤0< π、 л<0<2 3 3 (2)√√2 cos0 +1≧0 より 1 cose- √√2 0≦02 の範 囲で, 20 3 1 cose = √√2 -1≦t≦1) とお sin0 = と 0 となる0の値は v2 2 0 3 5 なる0の値は 0 = π, ・π 0 01 0 0 = π 2 3' 3 π よって、上の図から不等式を満たす 0 て、 0 よって,上の図から不等式を満たす の値の範囲は の値の範囲は 0≤0≤ 34 5 π 2 π 3 28801 it 3 (4) 2cos+√√3 < 0 より の範囲で, tan = √3 cose <- 2 002 の範 1 6 √3

解決済み 回答数: 1
数学 高校生

不等式を1つにまとめる286の問題と不等式を2つに分ける287の問題はどうしたらまとめるか分けるか分かりますか?? 見分けがつきません。

-π 286 (1) 002 の範 囲で, 1 sin0 = 7 と 2 RES で なる 0 の値は -π 11 6π- 7 11 を用いて, sind 0 = π, 6 式をつくる。 与えられた方 の値の範囲は =0 t≦)とお 2002の範 y 囲で, OP 1 cose = √2 と 11 さ << -π 6 よって、上の図から不等式を満たす! cose = - となる0の値は √3 3 y なる0の値 2 2 0 = 6 176 10 x よって,! 5 0 = 76 の範囲は 元 πC よって、上の図から不等式を満たす 16 VII の値の範囲は 5 6 7 289-12 <0< 1 2 なる 0 の値は 囲で, sinė 2 となる0の値は √3 $2 32 5 π, 元 3 3 287 (1) 002 の範 √330 0≤0 で, c とな 0 元 7 = π 44 よって,上の図から不等式を満たす の値の範囲は よって、上の図から不等式を満たす の値の範囲は 020 4 5 10 = -1 π * SOST 7 0≤0< π, <02 π 与えられた方 (3)2sin-√30 より sine≥ のを2 0≦0 <2πの範 囲で, +5=0 23 2. y 1 3 t≦) とお √3 sin0 = と O 2 0 0 0 から なる0の値は 1 0 = π 2 π 3'3 102 よって、上の図から不等式を満たす の値の範囲は π ≤0≤ 2 π 3 3 (4) 2cos+√30より cose<-- √3 2 002 の範 (2) 2cos0 +1≧0 より 1 cose ≥ - √2 0≦02 の範 囲で, 1 coso =- √2 となる0の値は 10 1 √2 L=2 290 3. 3 5 0 = 一π、 4T, 4 ・前小 よって、上の図から不等式を満たす 0 の値の範囲は 0≤0≤ 34 54 02 る 288-<< π y 2 の範囲で 20 tan 1/3 0 π と X COS よ の

解決済み 回答数: 1