数学
高校生
解決済み

不等式を1つにまとめる286の問題と不等式を2つに分ける287の問題はどうしたらまとめるか分けるか分かりますか??
見分けがつきません。

-π 286 (1) 002 の範 囲で, 1 sin0 = 7 と 2 RES で なる 0 の値は -π 11 6π- 7 11 を用いて, sind 0 = π, 6 式をつくる。 与えられた方 の値の範囲は =0 t≦)とお 2002の範 y 囲で, OP 1 cose = √2 と 11 さ << -π 6 よって、上の図から不等式を満たす! cose = - となる0の値は √3 3 y なる0の値 2 2 0 = 6 176 10 x よって,! 5 0 = 76 の範囲は 元 πC よって、上の図から不等式を満たす 16 VII の値の範囲は 5 6 7 289-12 <0< 1 2 なる 0 の値は 囲で, sinė 2 となる0の値は √3 $2 32 5 π, 元 3 3 287 (1) 002 の範 √330 0≤0 で, c とな 0 元 7 = π 44 よって,上の図から不等式を満たす の値の範囲は よって、上の図から不等式を満たす の値の範囲は 020 4 5 10 = -1 π * SOST 7 0≤0< π, <02 π 与えられた方 (3)2sin-√30 より sine≥ のを2 0≦0 <2πの範 囲で, +5=0 23 2. y 1 3 t≦) とお √3 sin0 = と O 2 0 0 0 から なる0の値は 1 0 = π 2 π 3'3 102 よって、上の図から不等式を満たす の値の範囲は π ≤0≤ 2 π 3 3 (4) 2cos+√30より cose<-- √3 2 002 の範 (2) 2cos0 +1≧0 より 1 cose ≥ - √2 0≦02 の範 囲で, 1 coso =- √2 となる0の値は 10 1 √2 L=2 290 3. 3 5 0 = 一π、 4T, 4 ・前小 よって、上の図から不等式を満たす 0 の値の範囲は 0≤0≤ 34 54 02 る 288-<< π y 2 の範囲で 20 tan 1/3 0 π と X COS よ の

回答

✨ ベストアンサー ✨

参考・概略です

θの範囲が,0≦θ<2πなので
 単位円での答え部分(斜線?)で,

  286:0や2πが含まれるとき
     答えはまとまった形

  287:0や2πが含まれないとき
     答えは,0か2πで分ける形

 となります

この回答にコメントする
疑問は解決しましたか?