学年

教科

質問の種類

数学 高校生

7 ①サが③になる理由が分かりません。1枚めの写真の右下にグラフを書いたのですが、どうやったら2次関数で表せるのですか? ②シスセソが分かりません。解説を読むとy=e(x-p)の2乗とあるのですが、この式に➕qをしなくて良い理由が知りたいです。y=e(x-p)の2乗➕qだ... 続きを読む

太郎さんと花子さんは,先生から出された次の問題について考えている。 問題 座標平面上に5点A(1,6), B(2.7), C(-2,-9), D(-4,-9), E (-7, 21) がある。 (i) 2次関数y=f(x) のグラフが、 3点 A, B, C を通る。 f(x) を求めよ。 (i) 2次関数y=g(x) のグラフが, 3点C, D, E を通る。 g(x) を求めよ。 先生: 2次関数のグラフの特徴をいかして, 2次関数の置き方を工夫できましたね。2次関数は, グラフが通る3点が与えられればただ一つに定まりますが、通る点から2次関数の置き方を 工夫すると、面倒な計算を避けることができますね。 では、次の問題を考えてみてください。 太郎: f(x) は2次関数だとわかっているから、f(x)=ax+bx+c とおいて計算すれば, a, b,c の値を求めることができそうだね。 3a+b=1 花子: f(x) は2次関数だから,ア という条件が必要だよ。 -730-36--15 太郎: そうだったね。 3点を通る条件が順に 49:16 ic=-a-h+g+b+c= 46-29-0-6=7, Bath=1 4-4 C-6-1774-6 a+ エンb+c=70-21-6-1+5=-930-392-15 3a+4=1 805-3 =(-4546 カン6+c=-9 a:-1 だから、この連立方程式を解くと, α = [キク h コクと求まるね。 でも, (ii)で同じことをしようとすると, 計算が面倒だね。 花子 2次関数のグラフの対称性を使うともう少しうまくできそうだね。 太郎: たしかに, 2点C, Dのy座標が等しいということから も大きいものは,頂点の座標が セ 先生: よくできました。 問題 2次関数のグラフがx軸に接し、2点 (1,1) (3,4)を通るとき、この2次関数を求めよ。 先生: この問題は、接する点の座標がわかっていないから、2次関数はただ一つに定まるかどうか わかりません。これまでの2人の学習をいかして、 2次関数の置き方を工夫して考えてみま しょう。 花子:できました。このような2次関数は2つあり、このうち、グラフの頂点のx座標が最 ス 51 ソリとなりますね。 (2) g(x)= サ ~に当てはまる数を求めよ。 とすることができるね。 花子: g(x)= サ とした方が, (i) と同じようにするよりも計算が楽にできそうだね。 (1)イ~ コに当てはまる数を求めよ。 ア の解答群 ⑩ a=1 ① a=-2 2 a=0 ③ a > 0 ④ a<0 の解答群 ⑩ d(x-3)2-9 ① d(x-3)2 +g ② d(x+3)2-9 ③ d(x+3)+q E. 21 -4 -2 0 C -9 -18- f(x)=ax2+bx+c sayaoc = 1 (qa+3+C=4 <<-19-> (配点 15) <公式・解法集 13

解決済み 回答数: 1
数学 高校生

(2)の立式の意味も全然分かりません。初歩の初歩から教えて欲しいです。お願いします🙇🏻‍♀️

(1) 630の正の約数の個数を求めよ。 (2) 433 00000 自然数Nを素因数分解すると, 素因数にはと7があり,これら以外の 素因数はない。 また, Nの正の約数は6個, 正の約数の総和は104である。 素因数と自然数Xの値を求めよ。 CHART & SOLUTION 自然数Nの素因数分解が N=pg の正の約数について 個数は(a+1)(6+1)(c+1)...... p.426 基本事項 *(1+p+b²+...+pa)(1+q+q²+...+q³) (1+r+r²+...+...... (2)条件から N = p.7 (a,bは自然数) と表される。 よって, Nの正の約数は (a+1) (6+1) 個 また,正の約数の総和は (1+p+p²+...+p²) (1+7+7²+...+76) 解答 (1)630 を素因数分解すると 4章 630=2・32・5・7 よって, 求める正の約数の個数は (1+1)(2+1)(1+1)(1+1)=2・3・2・2=24(個) (2)Nの素因数には と 7 以外はないから、大量 a b を自然数として N=p7° と表される。E Nの正の約数が6個あるから 13 2)630 素因数 2, 3, 5, 7の指数 3)315 がそれぞれ1, 2, 1, 1 105 素因数の指数に1を加 3) aec 5) 35 (a+1)(6+1)=6(*) a+12,6+1≧2 であるから=6(+191 = taka+1=2,6+1=3 または α+1=3, 6+1=2 [1] α+1=2,6+1=3 すなわち α=1, 6=2のとき えたものの積。 素因数の指数に1を加 えたものの積が,正の約 数の個数 。 ←(*) から, a +1,6+1 はどちらも6の約数。 約数と倍数 正の約数の総和が104 であるから と。(1+p)(1+7+72)=104 6454 これを解くと p= 57 47 これは素数でないから不適。 (1+p+p)(1+7)=104 [2] α+1=3,6+1=2 すなわち a=2, 6=1のとき 整理すると mp²+p-12=0SAYUNO これを解くと p=-4,3 適するのは p=3 3は素数であるから適 する。 このとき N=32・7=63 ないするつ PRACTICE 106 3 (1) 756 の正の約数の個数を求めよ。 素因数にはと5があり,これら以外の素因数は 白

解決済み 回答数: 1
数学 高校生

例題28の⑵について質問です!!S2m=Σ[k=1..m]と2mがmに変化している理由がわかりません。教えてください!

p.35 基本 等差数列 等比数列 る。 まねる。 47 重要 例題 28S2m, S2m-1 に分けて和を求める 一般項がαn=(-1)"+1n2 で与えられる数列{a} に対して, S,= (1) azx-1+a2k(k= 1, 2, 3, ......) をを用いて表せ。 (2) Sn= (n=1, 2, 3, ..... と表される。 00000 akとする。 k=1 針(2) 数列 (an)の各項は符号が交互に変わるから、和は簡単に求められない。 次のように項を2つずつ区切ってみると S=(12-22)+(32-42)+(52-62)+...... =b2 かえ hey hey m = B 5+5 =bs 上のように数列{bm} を定めると,b=azk-1+a2k(kは自然数) である。 よって,m を自然数とすると [1] n が偶数, すなわち n=2mのときはSm= られる。 =bx=(2-1+a)として求め k=1 (1 1 章 ③種々の数列 [2]n が奇数, すなわち n=2m-1のときは, S2m=S2m-1+a2m より S2m-1=S2m-a2m であるから, [1] の結果を利用して S2m-1 が求められる。 このように, nが偶数の場合と奇数の場合に分けて和を求める。 (1) α2k-1+αzk=(-1)2k(2k-1)^+(−1)2k+1(2k)2 かりやすい。 数が同じ項を ここそろえて書く 初項3, 公 -1 の等比数 解答 (2) [1] n=2m (mは自然数) のとき =(2k-1)^(2k'=1-4k (a2k-1+a2k)=(1-4k) m-4. k=1 123mm+1)=2m²-m 02m k=1 n m であるから 2 n Sp=-2(2)² - 2 = n(n+1) [2] n=2m-1 (mは自然数) のとき azm=(-1)2m+1(2m)=-4m² であるから S2m-1=S2m-Am=-2m²-m+4m²=2m²-m (-1)=1, (−1)奇数=-1 <={(2k-1)+2k} ×{(2k-1)-2k} Szm= (a1+a2) +(a3+α)+.... + ( a2m-1+azm) Sm=-2m²-mに =77 を代入して,n m= の式に直す。 <S2m=S2m-1+a2m を利用する。 ノール は等 n+1 m= であるから 2 S=2(n+1)+1=1/2n (n+1){(n+1)-1} S2m-1=2m²-mをnの 式に直す。 (*) [1] [2] のS” の式は 符号が異なるだけだから, 2(n+1) [1], [2] から Sn= (−1)"+ -n(n+1) (*) 2 (*)のようにまとめるこ とができる。 練習 一般項がαn=(-1)"n(n+2) で与えられる数列{an} に対して,初項から第n項ま ③ 28 での和 S” を求めよ。

未解決 回答数: 1