学年

教科

質問の種類

数学 高校生

二次不等式について質問です。 1)のマーカ部分ですが、なぜ全ての実数xについて成り立つmの範囲を探すのに、D<0になるのでしょうか? D<0は解を持たない時じゃないのですか?? 解説していただきたいです、よろしくお願いします🙇🏽

準 すべての実数xについて,次の2次不等式が成り立つような定数値の範囲 を求めよ。 (1)x2+mx+3m-5>0 [(1) センター試験 (2) mx²+4x-2<0 & GUIDE 常に ax2+bx+c>0 が成り立つ⇔a>0かつ DI 常に ax2+bx+c<0 が成り立つ a<0 かつ DI CHART 「すべての実数xについて, 2次不等式 ax2+bx+c>0 が成り立つ」とは、 「2次関数y=ax+bx+c のグラフが常にx軸より上側にある」 ということ。 グラフは下に凸(a>0)で,x軸と共有点がない (D< 0) → ****** <0 の場合も、同様に考えて「グラフが常にx軸より下側にある」 グラフは上に凸 (a<0) で, x軸と共有点がない (D<0) ! ! 解答 (1) y=x2+mx+3m-5・・・・ ① とする。 x2 の係数は正であるから, ① のグラフは下に凸の放物線で数 ある。 ++ すべての実数xについて, 不等式 x2+mx+3m-50 が成 り立つための条件は,① のグラフが常にx軸より上側にあ ることである。 D x (1) では (x2 の係数) > 0 が初めから成り立って ゆえに 2次方程式 x2+mx+3m-5=0 の判別式をDとすいる。 ると D<Oの件は ここで D=m²-4.1(3m-5)=m²-12m+20 R =(m-2) (m-10)NJURCES よって(m-2)(m-10)<052 したがって 2<m<10 10m

解決済み 回答数: 1
数学 高校生

複素数平面の問題で分からないところがあります。 [3]∠Cが直角のとき z=-1±i/2 となる理由がわかりません。

50 50 直角二等辺三角形をなす 3点 ( 2 ) ■基礎例題 23 発展 例題 28 複素数zの虚部が正の数であり, 3点A(z), B(22), C (23) は直角二等辺三 発 角形の頂点である。このとき,ぇを求めよ。 CHARL & GUIDE 直角二等辺三角形をなす3点 (S) + の回転なら±i倍 例題 23 と同様に,直角になる角が∠A, B, ∠Cのときに分けて考える。 π 直角を挟む 2辺→ 1辺を,直角の頂点を中心に りの1辺に重なるととらえる。 ・または- - 2 2 π だけ回転すると残 (1) (S) ■解答 [1] y [1] ∠A が直角のとき AC⊥AB, AC=AB から z³-z=±i(z²-z) A-1 の ゆえに z(z-1)(z+1)=±iz(z-1) -1 0 2 1 条件より z=0, z≠1 であるから,両辺をz (z-1) で割って A -2B z+1=±i よって z=-1±i の虚部は正の数であるから z=-1+i [2] y 1A [2] ∠B が直角のとき BC⊥BA, BC=BA から ぷーズ=±i(スー22) B [1] と同様にして z=Fi -1 の虚部は正の数であるから z=i [3] ∠Cが直角のとき -1 C CA⊥CB, CA=CB から スープ=±i(2-2) [3] [1] と同様にして A (株 12 1+z=iz ゆえに 1±à 2=-- 14 C の虚部は正の数であるから 計 2000-2 1 0 4 11 1 B 2 ④ EX 28 複素数平面上に相異なる3点A(Z), BI (2) S(Z)と する複素数の2乗が表す3点A( (1) この点に対応

解決済み 回答数: 1
数学 高校生

N進法について質問です。 マーカー部分についてですが、bが12の倍数なのはわかったのですが、なぜb=0になるのかがわからないです。 解説していただきたいです。よろしくお願いします!

発 展 例題 n 119 進数の各位の数と記数法の決定 <<< 基本例題 110 ①① (1) 自然数N を7進法と5進法で表すと、ともに3桁の数であり,各位の数の 並びが逆になるという。 Nを10進法で表せ。 (2)は3以上の自然数とする。 2進数 11010(2) n進法で表すと 222 (n) となる ようなnの値を求めよ。 CHART &GUIDE n進法の扱い 10進法で考える。 abc (n) は10進法で an+bn+c 記数法の底が混在しているから、 10 進数に直して処理する (底の統一)。 (1) N=abe (7) とすると, N = cba(s) でもあるから, abe()=cba(s) として a,b,cの 値を求める。最高位の数は0でないこと, n進法における各位の数は0以上η-1以下 の整数であることが値を求めるうえでのポイントとなる。 (2)11010(2) 222 (n) を10進法で表し,nの方程式を作る。する 解答 自 (1) N=abc (7) とすると, 条件から N=cbas各位の数の並びが逆。 ゆえに abc (7)=cba (5) ① ここで, a≠0, c≠0 であるから ****.. 1≤a≤4, 0≤b≤4, 1≤c≤4 a・72+6・7+c=c・52+6・5+α 最高位の数α, cは0で ②善はない。7より5の方が 小さいから、底5につい 497 ①から よって 48a+26-24c=0 ゆえに b=12(c-2a) よって, 6は12の倍数であるから,②より てのみ各位の数の範囲を 考えればよい。 b=0 ゆえに 0=12(c-24) よって c=2a ③ ② の範囲で ③ を満たす α, c の組は (a,c) = (1,2) (2,4) (a,c) = (1,2) のとき (a,c) = (2,4)のとき したがって .WAT N=1・72+0・7'+2・7°=51 N=2・7°+0・7'+4・7°=102 N=51, 102 MA ← 1≦2a≦4からα=1,2 ◆N=abc (7) に代入した。 N=cba (5) に代入して もよい。 03072+1.2+0.2°=26

解決済み 回答数: 1
数学 高校生

(2)のマーカーで囲った部分について質問なのですが、なぜx=4,5とわかるのでしょうか?

79 |発 例題 <<< 標準例題 36 ★ 展 46 連立不等式が解をもつ条件 00000 x<6 連立不等式 ① 2x+3≧x+α の解について,次の条件を満たす定数 αの 値の範囲を求めよ。 (1) 解をもつ。 (2)解に整数がちょうど2個含まれる。 2章 CHART & GUIDE 連立不等式の解の条件 数直線で考える 1 各不等式を解く。 不等式 ② の解はx≧〇(αの式) ②の形。 ... 2 数直線上に,条件を満たすように範囲 ① ②' を図示することでαの不等 式を作り, それを解く。 例えば, (1) では ① ②'の共通範囲が存在する ことが条件であるから,右のような数直線を考 えて ○<6 という (αの) 不等式を作る。 6 x 解答 ②を解くと xa-3 (1) 連立不等式が解をもつための条件は α-3<6 これを解いて a<9 (2) α <9 のとき,①,②' の共通範囲は ...... a-3≦x<6 これを満たす整数xがちょうど2個あるとき, その値は x=4,5であるから, α-3が満たす条件は ① -113+1523-11-2009 3 < a-3≦4 各辺に3を加えて Lecture 不等号に=が含まれる・含まれないに要注意! 上の解答でをα-3≦6 としてしまうと, α-36 すなわち α=9 のとき②' が x≧6 となり、①と②' の共通範囲が存在しなく なるので誤りである。 ① a-3 ① 3 4 5 6 x a-3 (1) α=9のとき ② 発展学習 また,イについても, 3, 4 を α-3 の値の範囲 に含めるかどうかに注意が必要である ( →右図参 照)。 6 x (2) 3=a-3(a=6) のとき (2) a-3=4(a=7)のとき 心に 3 4 5 6 x 1456 整数の解は3個で, ダメ。 整数の解は2個で, OK。 X TRAINING 46 ⑤ 3x-7≦5x-3 の解について,次の条件を満たす定数 αの値の範囲を求

解決済み 回答数: 1
数学 高校生

黄色の部分、(1-√3a)(1+√3a)にしてはいけないのは何でですか?これですると答えが変わってしまいます、、

aは定数で,a>0 とする。 関数 f(x) =x-3a'x (0≦x≦1) について 最小値を求めよ。 CHART &GUIDE (2) 最大値を求めよ。 最大・最小 増減表を利用 極値と端の値に注目 文字定数αのとる値によって, 関数 f(x) のグラフの形が変わるから, 分けして考えなければならない。 (1) 極小値をとるxの値αが 0≦x≦1 に含まれるかどうかで場合分|| (2)この問題の場合, 極大値は影響しないから、定義域の端の値を比較 f'(x)=3x²-3a²=3(x+a)(x-a) f'(x)=0 とすると x=±a (1)a>0であるから, 0≦x≦1 における f(x) の増減表は,次のようになる [1] 0<a<1 のとき 10 x f'(x) f(x) 0 ... ... a 1 - 0 + -2a³ 7 1-3a² [1], [2] の増減表から 0<a<1 のとき x =αで最小値-2α a≧1 のとき x=1 で最小値1-3a2 [2] α≧1 のとき x f'(x) 1 f(x) 0 1-3a² 極小値をとる 義域内にある (1)[1][2] それぞれの増減表から [1] 0<a<1 のとき 最大値は f(0) = 0 または f (1)=1-3α² ここでf(1)-f(0)=1-3a²=-(√3a+1)(√3a-1) ■定義域の端 f (1) が最大 両者を比較 // のとき,f(0) <f(1) から,最大値は(1)(1 0<a< /3 3 =≦α <1 のとき,f(0) ≧ (1) から, 最大値はf(0) 2] a≧1 のとき,最大値はf(0)=0 ■], [2] から 0<a< < 1 のとき x=1で最大値1-3a2 /3 a≥ のとき x=0 で最大値 0 ▪ ƒ (1) — ƒ (0)| 0≦x≦1で 関数。

解決済み 回答数: 1
数学 高校生

(1)反復試行の確率について質問です。 黄色いマーカーで囲った部分なのですが、なぜ2/3をかけているのか分かりません。 教えて欲しいです。よろしくお願いします。

・繰り返しのゲームで勝つ確率 標 例題 準 41 反復試行の確率 (3) 2 あるゲームでAがBに勝つ確率は 3 <<<基本例題39.40 000 であり,引き分けはないものとする。 A. Bがゲームをし、先に4勝した方を優勝者とする。 (1)5ゲーム目でAが優勝者となる確率を求めよ。 (2)7ゲーム目で優勝者が決まる確率を求めよ。 CHART GUIDE n回目で決まる反復試行の確率 (n-1) 回目まで反復試行回目にか (n-1) 回目まで反復試行を考え, n回目の確率を掛け合わせる。 (1) Aが4ゲーム目までに3勝1敗) し, 5ゲーム目にAが勝つ場合である。 (2)6ゲーム目まで3勝3敗で, 7ゲーム目で [1] A が勝つ場合 TRAN [2]Bが勝つ場合 の確率をそれぞれ求める。 [1] と [2] は互いに排反であるから, 最後に加法定理を利用 する。 1. 2 引き分けがないので,Bが勝つ(A が負ける)確率は 1-1/2 3 答 の目が出る出回 (1)5ゲーム目でAが優勝者となるのは, 4ゲーム目までにA|(1) A の勝ちをO,負けを が3勝し、5ゲーム目でAが勝つ場合である。は 18 ×で表すと 2 21 よって, 求める確率は Ca = =4× 2 24 64 0: X: 3 3 35 243 1 (2)[1]7ゲーム目でAが優勝者となる場合 であるから,その確率は 2 2 -=20x 181 6ゲーム目までにAが3勝し, 7ゲーム目にAが勝つとき 24 O XOO Ox O 3 37回264回 3通り は ........... 2 O O O X 3 4 O ○○ × 5 0 ズーム UP

解決済み 回答数: 1
数学 高校生

複素数の問題です。 POINT CHECKとPRACTICEの大門1について、 どちらも同じ「複素数の範囲で因数分解をしなさい」と言われていて、前者の答えは()の中の分数を無くすようにしているのに対して、後者は()に分数があるまま答えを出しています。 何が違うのでしょう... 続きを読む

第2章 複素数と方程式 1 複素数と2次方程式 23 解と係数の関係 (2) 数Ⅱ [学習日 P64 POINT CHECK ①の類題 実数の範囲で因数分解する。 2次方程式 4.12x+7=0を解くと, ・特に指定がない場合は, 有理数の範囲で因数分解する。 つまり、 2次式はつねに1次式の積に因数分解できる。 (ただし, 複素数の範囲) 学習の目標 2次方程式の解を利用して因数分解しましょう。 STUDY GUIDE 愛念の全合 2次式の因数分解 2次方程式 ax+bx+c=0の2つの解をα, B とおくと, 次の関係がある。 公式の因数分解 ax'+bx+c=a(α)(B) 計算における注意 因数分解のときに,g を忘れないこと。 α. β は,解の公式から必ず求められる。 要点をまとめましょう。 662-4.7 I= 4 68 4 3±√2 2 一複素数 実数 [ 有理数!!!!無理数 よって, 例題 次の2次式を複素数の範囲で因数分解しなさい。 x²-4x+1 解の公式から解を求める 2次方程式 4x+1=0を解くと. x=2±√2"-1=2±√3 よって, 4r+1={z(2+√3)} {ェー(2-√3)} =(x-2-√3)(x-2+√3) 実数の範囲での因数分解 POINT CHECK ◆次の2次式を複素数の範囲で因数分解しなさい。 ①の類題 4ー12c+7 x²-6x+14 2次方程式6z+14=0を解くと. =3±√32-14=3±√-5=3±√5i よって、 = 6z+14= {z(3+√5)}{ェー(3−√5) (3-5) (3+√5i) 42-12F+7=(3+/2)(x-3) 2 =(2x-3-√2) (2-3+√2 ) ②の類題 複素数の範囲で因数分解する。 2次方程式 92+6x+2=0を解くと, I= -3±√32-9.2 9 -3±√-9 複素数の範囲での因数分解 9 -3±√9i 要点の確認をしましょう 9 -1±i 品の類題 9z+6z+2 = 3 (2x-3-√2) (2x-3+√2) -64- PRACTICE 1 次の2次式を複素数の範囲で因数分解しなさい。 10 L100 (1) 3-7x+3 よって, 9x²+6x+2=9(x−−1 + 1)(x-1-1) 3 =(3+1-i)(3c+1+i) (3x+1-i)(3x+1+i) P65 PRACTICE 1 2次方程式の解を求めて, 因数分解する。 (1) 2次方程式32-7x+3=0を解くと, 7±√13 I= 6 数Ⅱ 練習問題を解いてみましょう L103 (2) 2-3x+5 3c-7s+3=3(x_7+/13)(x_7-/13) 6 6 (2) 2次方程式 2-3x+5=0を解くと, 3(x-7+√13)(x-7-√13) 6 6 3+√11 (x-3)(x-3) 2 次の式を ①有理数 ② 実数 ③複素数の各範囲で因数分解しなさい。 3±√11i 2 3+5=(x-3)(x-3) 2 2(1) -32-10=(x2+2) (2-5) ① =(x2+2)(x+√5)(x-√5) →②

解決済み 回答数: 1