学年

教科

質問の種類

数学 高校生

この問題のコで、3ページのような式はどこから求めるのでしょうか、、? 5を並行移動したのが4というのは書いてあるので分かるのですが、急にこの式が出てきてわからないです。。 解説お願いします

第4問~第7問は,いずれか3問を選択し, 解答しなさい。 ここで, オ 第7問 (選択問題)(配点 16) 焦点の座標 (p, 0), のときの楕円は,長軸の長さ 短軸の長さ H コ [1] 太郎さんと花子さんは, 2次曲線の性質について話している。 2人の会話文を 0である。 また, に シ のときの双曲線の漸近線は, 直線 y=± だけ平行移動したものである。 サ xをx軸方向 イ エ の解答群 (同じものを繰り返し選んでもよい。 ) 読んで,下の問いに答えよ。 太郎:楕円は、2定点F,F′からの距離の和が一定である点Pの軌跡だよね 花子: 2定点からの距離の差が一定なら双曲線になるよね。 太郎:放物線は、定点Fと,Fを通らない定直線からの 距離が等しい点の軌跡だよね。 花子: 楕円や双曲線の定義と放物線の定義は設定が違うね。 太郎: 定点FとFを通らない定直線からの距離の比が一 定という設定にした場合どうなるか調べてみよう。 (1) F(c, 0), F'(-c, 0) のとき, 2定点F, F' からの距離の和が2aである楕円の 方程式は ・ 62 =1 ただし,62 ア の解答群 a²+c² a²-c² ②√a²+c² (2) 太郎さんと花子さんは定点と定直線からの距離の比が一定という設定にした場 合どうなるかを調べることにした。 すると,そのような設定の場合も2次曲線に なり,比によって, 2次曲線の形が決まることが分かった。 p>0, r0 とする。 点 F (p, 0) からの距離とy軸からの距離の比が1で ある点P(x, y) の軌跡の方程式を求めると、 x+ye- =0 となるから オ のとき、楕円を表し、 カ のとき, 放物線を表し、 キのとき,双曲線を表す。 (数学Ⅱ・数学Bの第7問は次ページに続く。) Þ ① 2p ② p² ③ 2p² ④ (1+m²) ⑤ (1-2) 6 (1-r) 22-1 ⑦ オ キ の解答群(同じものを繰り返し選んでもよい。 ) r>1 ① 0 <r<1 (2) r=1 ク コ の解答群 (同じものを繰り返し選んでもよい。) 2pr 2pr (0 2pr 2pr 1-2 1+2 √1+2 √1-22 (1+m2) p(1-r²) p(1+m²) p(1-r²) 1-2 1+2 ⑥ √1-22 √1+22 サ シ の解答群(同じものを繰り返し選んでもよい。) +1 ② Þ 1-2 1+re (数学Ⅱ・数学B・数学C第7問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

赤線部分の意味が分かりません🙇🏻‍♀️

重要 例題 57 独立な試行の確率の最大 423 00000 さいころを続けて100回投げるとき,1の目がちょうど回 (0≦k≦100) 出る確 率は 100Ck × 解答 6100 であり,この確率が最大になるのはk= のときである。 [慶応大] 基本49 かし,確率は負の値をとらないことと nCr= や階乗が多く出てくることから, 比 pk+1 (ア) 求める確率をDとする。 1の目が回出るとき,他の目が100回出る。 (イ)確率pk の最大値を直接求めることは難しい。 このようなときは,隣接する2項 k+1とかの大小を比較する。大小の比較をするときは,差をとることが多い。し n! r!(n-r)! を使うため、式の中に累乗 をとり、1との大小を比べるとよい。 þk pk Dk+11pk<D+1 (増加), pk pk+1 <1⇔pk>ph+1 (減少) CHART 確率の大小比較 Et pk+1 をとり、1との大小を比べる pk さいころを100回投げるとき, 1の目がちょうど回出る 確率を とすると 6 Dk = 100 Ck ( 11 ) * ( 5 ) 100 * = 100 Cr× 75100-k 6100 pk+1 100!.599-k ここで × pk (k+1)!(99-k)! k!(100-k)! 100!-5100-k 出 k! (100-k)(99-k)! 599-k 100-k (k+1)k! 5.59-5(k+1) (99-k)! Dk+1 > 1 とすると >1 pk 5(k+1) 両辺に 5(k+1) [0] を掛けて100k5(k+1) 10月 「反復試行の確率。 pk+1=100C(+) X 5100-k+1) 6100 ・・・の代わりに +1とおく。 2章 独立な試行・反復試行の確率 95 これを解くと k<- =15.8··· 6 よって, 0≦k≦15のとき Pr<Pk+1 は 0100 を満たす 整数である。 Dk+1 <1 とすると 100-k<5(k+1) pk pkの大きさを棒で表すと 95 これを解いて k> -=15.8・・・ 最大 (C) 増加 減少 よって, 16のとき pk> Pk+1 したがって po<かく...... <か15<16, P16> D17>>P100 2012 よって, Dr が最大になるのはk=16のときである。 15 17 16 100/ 99

回答募集中 回答数: 0