学年

教科

質問の種類

数学 高校生

151.4 これでも大丈夫ですよね??

236 HERE 00000 基本 例題 151 3倍角の公式の利用 本文 ARCRA 半径1の円に内接する正五角形ABCDEの1辺の長さをaとし, 6=2 8200 らとす (1) 等式 sin 30+ sin200 が成り立つことを証明せよ。 (3) α の値を求めよ。 (2) cose の値を求めよ。 (4) 線分 AC の長さを求めよ。 身 18-30 53120.233 指針 (1) 30+20=2mであることに着目。なお, 0 を度数法で表すと 72°である。 (2) (1) は (2)のヒント (1) の等式を2倍角3倍角の公式を用いて変形すると COSAの2次方程式を導くことができる。 0<cos0 <1に注意して、その方程式を解く (3) (4) 余弦定理を利用する。 (4) では, (2) の方程式も利用するとよい。 解答 (1)0=1/3から 50=2π このとき したがって (2) (1) の等式から sin00 であるから, 両辺を sin0で割って 3-4 sin²0+2 cos 0=0 3-4(1-cos20)+2cos0=0 4cos20+2cos0-1=0 ゆえに 整理して よって sin30=sin (2π-20)=-sin20 sin 30+ sin20=0 55 3sin0-4sin0+2sin@cos0=0 0 <cos0 <1であるから (3) 円の中心を0とすると, △OAB において, 余弦定理により AB2 = OA2+OB²-20A・OB cose AC > 0 であるから cos0= a>0であるから a=AB= V (4) △OAC において, 余弦定理により AC"=OA2+OC2-20A・OC cos 20 =1²+1²—2·1·1. −1+√5 _ 5-√5 4 2 −1+√5 4 -√3+2.11 3+2・ AC= 30=2π-20 (*) 5-√5 2 =1+12-2・1・1・cos20=2-2(2cos20-1) =4-4cos20=4-(1-2cos0)=3+2 cose L (2) の(*)から。 -1+√5 5+√5 2 4 (1) 0=36° のとき, sin30= sin20 が成り立つことを示し 現が成り立つこ <50=30+20 3倍角の公式 sin30=3sin0-4sin'0 忘れたら, 30=20+0とし て, 加法定理と2倍角の 式から導く。 (3) B. B 212 1 CONDO a (4) A 1 05 0 D おめよく まめ ※加法 では ある 次 次C sin( cos(- tan 分母 t 上の sinza

解決済み 回答数: 1
数学 高校生

97番です 解答ではこう書いてありますが、合同式を使っても証明出来ると思うのですがどうでしょうか?

~4₁-an ) +1 階数 ATL 221-1= ②=1+3× b₁ = a₂-a₁ 2(bn+1) anti-an -n+/=3₁² ON= KXI a.0 [x² ②3で割った余りが0, 1,2の場合に分ける。 → 3k, 3k+1,3k+2 (n = ant a=1 12-3X-10= 研究 自然数や整数に関わる命題のいろいろな証明 余りによる整数の分類 整数は、次のように分けることができる。 (左は整数) ① 偶数と奇数に分ける (2で割った余りが 0, 1)。 → 2k, 2k+1 (+1)ami,+αBan 一般に,正の整数mが与えられると、 すべての整数nは mk, mk+1, mk+2,......, mk+(m-1) ante=5(ant) =-2(am b2+1 = -2 bn bn=(-2) ante +2 (ant)=5ant Cnt=5cm, 7Gm=5m² an= 5h S ant=3ant (x-5)(x+ 第2節 数学的帰納法 「 141 O Ch=5 のいずれかの形で表される。 整数についての事柄を証明するとき, 整数をある正の整数で割った余りで分類して考える とうまくいく場合がある。 第1章 anto 数列 2 連続する整数の積の性質 連続するm個の整数には,必ずmの倍数が含まれるから,それらの積はの倍数である。 参考ksm(kは自然数) とすると, 連続する 個の整数には、必ずんの倍数が含まれる から,それらの積はんの倍数である。 したがって, 連続する 個の整数の積はm! の倍数である。 STEP B 97 (1) 整数n を 2で割った余りで分類することで, 3²-nが2の倍数である ことを証明せよ。 (2) 整数nを3で割った余りで分類することで,n-n+9が3の倍数であ ることを証明せよ。 98 nは整数とする。 (1) 連続する2個の整数には、必ず2の倍数が含まれることを利用して、

解決済み 回答数: 1