学年

教科

質問の種類

数学 高校生

この表は覚えた方がいいですか? 全ては無理だと思うので、覚える必要があるならどの範囲で覚えた方がいいかも教えていただけると嬉しいです。

三角比の表 角 sin COS tan 角 0° 0.0000 sin 1.0000 COS tan 0.0000 GRARE & WWW W W W W W WCNNNNNNNNLIGSENT 0.0175 45° 0.9998 0.7071 0.7071 0.0175 1.0000 2° 0.0349 0.9994 46° 0.7193 0.0349 0.6947 1.0355 0.0523 0.9986 47° 0.7314 0.0524 0.6820 1.0724 0.0698 48° 0.9976 0.7431 0.0699 0.6691 1.1106 49° 0.0872 0.7547 0.9962 0.6561 1.1504 0.0875 50° 0.1045 0.7660 0.6428 0.9945 1.1918 0.1051 51° 0.1219 0.9925 0.7771 0.6293 1.2349 0.1228 52° 0.1392 0.7880 0.9903 0.6157 1.2799 0.1405 53° 0.1564 0.7986 0.6018 0.9877 1.3270 0.1584 54° 0.8090 0.5878 1.3764 0.1736 0.9848 0.1763 55° 0.8192 0.5736 1.4281 11° 0.1908 0.9816 0.1944 56° 0.8290 0.5592 1.4826 0.2079 0.9781 0.2126 57° 0.8387 0.5446 1.5399 13° 0.2250 0.9744 0.2309 58° 0.8480 0.5299 1.6003 14° 0.2419 0.9703 0.2493 59° 0.8572 0.5150 1.6643 15° 0.2588 0.9659 0.2679 60° 0.8660 0.5000 1.7321 0.2756 0.9613 0.2867 61° 0.8746 0.4848 1.8040 17° 0.2924 0.9563 0.3057 62° 0.8829 0.4695 1.8807 18° 0.3090 0.9511 0.3249 63° 0.8910 0.4540 1.9626 0.3256 0.9455 0.3443 64° 0.8988 0.4384 2.0503 20° 0.3420 0.9397 0.3640 65° 0.9063 0.4226 2.1445 21° 0.3584 0.9336 0.3839 66° 0.9135 250.4067 2.2460 22° 0.3746 0.9272 0.4040 67° 0.9205 0.3907 2.3559 0.3907 0.9205 0.4245 68° 0.9272 0.3746 2.4751 0.4067 0.9135 0.4452 69° 0.9336 0.3584 2.6051 0.4226 0.9063 0.4663 70° 0.9397 0.3420 2.7475 26° 0.4384 0.8988 0.4877 71° 0.9455 0.3256 2.9042 0.4540 0.8910 0.5095 72° 0.9511 0.3090 3.0777 0.4695 0.8829 0.5317 73° 0.9563 0.2924 3.2709 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046 34° 0.5592 0.8290 0.6745 79° 0.9816 0.1908 5.1446 35° 0.5736 0.8192 0.7002 80° 0.9848 0.1736 5.6713 36° 0.5878 0.8090 0.7265 81° 0.9877 0.1564 6.3138 37° 0.6018 0.7986 0.7536 82゜ 0.9903 20.1392 7.1154 38° 20.6157 0.7880 0.7813 83° 0.9925 0.1219 8.1443 39° 0.6293 0.7771 0.8098 84° 0.9945 0.1045 9.5144 40° 0.6428 0.7660 0.8391 85° 0.9962 0.0872 11.4301 41° 0.6561 0.7547 0.8693 86° 0.9976 0.0698 14.3007 42° 0.6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811 43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 20.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900 45° 0.7071 0.7071 1.0000 90° 1.0000 0.0000 なし

解決済み 回答数: 2
数学 高校生

写真の矢印が書いてあるところで、積分したあと、微分するという考え方をするのはなぜですか? 教えてください🙇‍♀️

350 重要 例題 225 定積分の最小値 a は 0<a<1 を満たす定数とする。 (1) 関数f(x)=xlx-α| のグラフの概形をかけ。 (2) 積分g(a)=fxx-aldxの値を最小にするaの値を求めよ。 CHART & SOLUTION CHART & SOLUTION 絶対値 場合に分ける [-(x-a) (x≤a) (1) Ix-al= { } 解答 (1) (x ≥a) (2) (1) のグラフをもとに積分区間を 0≦x≦a≦x≦1に分割。 #sxsa kasxs IS |dx0=(1-281 (4+1) [-(x-a) (x≤ a) (x≧a) x-a |x-α1 = (-1² であるから x-a [-x(x-a) f(x) = { = x( (x≤ a) x(x-a) (x≥a) よって、y=f(x)のグラフの概形 は右の図の実線のようになる。 x3 x a = - [ ² - ² ² × ²] + [ ³² - ² x ²] 3 3 2 10 =-2 3 a³ 2(9²) なんで微分? 6 'g'(a)= a ² — — — = (a + √2)(a − +√ 2 ) S g'(a)=0 とすると, 0<a<1 から 0<a< 1 におけるg(α) の増 減表は右のようになる。 よって, g(a) の値を最小に する α の値は (2) g(a)=${x(x-a)}dx+ x(x-a)dx co舗嵐 S 7₁S+ ²xE=(x)\₁54 a³\ 1 + 3 3 2 a= a 1 = 2 3 x2+ax MOITAM f/M0ITMÃO NEI M 1 coper = -(x - 2)²+2² 3 [a] a 0 g'(a) √/22 g(a) vala! a= ... 0=(1-+p+²DE) (I+D) x[ 2+²=(0)9/ a a+ I 12th 1 3 √√2 : 0 + 極小 K 00000 SS T day (東北大) 基本 218 αは積分区間を表すか ら,等号は両方に必要。 x²-ax = (x - 2)² - 4² 0≦x≦1を 積分区間 x=a (0<a<1) TA する。 33830-ON = - [F(x)] + [F(x)] DAT =-2F(c)+F(a)+F(6) ←g (a) はαの3次関数と なるから、 微分法を利用。 a= のとき,g(a) は極小かつ最小となる。

解決済み 回答数: 1
数学 高校生

53. 「互いに排反である」ことを書いたのですが 別に大丈夫ですよね??

380 00000 平面上の点の移動と反復試行 基本 例題 53 右の図のように、東西に4本, 南北に5本の道路がある。P 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点Pを通る確率を求めよ。 ただし,各交差点で、東に行くか, 北に行くかは等確率 とし、一方しか行けないときは確率でその方向に行く ものとする。 A→P→Bの経路の総数 A→Bの経路の総数 指針▷ 求める確率を から, 5C22C2 7C3 A ESCAR とするのは誤り! これは、 どの最短の道順も同様に確からしい場合の確率で,本問は道順によって確率が異なる。 1 11 例えば,A↑↑↑→→P→→Bの確率は 2 •1•1•1•1= -1=1/ 8 2 HOT POS 1 2 11 1 1 1 -.1.1=- 2 2 2 2 2 32 基本52 重要 54. A↑→↑→↑P→→Bの確率は 15-0 したがって,Pを通る道順を, 通る点で分けて確率を計算する。 0=x 解答 右の図のように,地点 C, D, C', D', P'をとる。 Pを通る道順には次の3つの場合があり,これらは互いに排反で ある。 [1] 道順A→C→C→P この確率は 1/2×1/12/3×1/2/3×1×1=(12/12-1/3 LONGAU [2] 道順A→D'→D→P 1 3 6 16 1 + + 8 16 32 32 2 JURCELOX ESO (C) 12年) (1 ACCED PAHB C' D' B A acopa mo P' この確率は(1/2)(1/2)×1/1/1×1=3 (1/21) - 1/6 3 = [1] ↑↑↑→と進む。 [3] 道順A→P′'′→P [2] ○○○↑→と進む。 ○には, この確率は(1/2)^(1/2)x/1/26(12/11=1 [3]001 とな 32 には、2個と12個が入る。 よって, 求める確率は 1個と12個が入る。 (すべても以下の温 (すべて以下 ゴール 練習 右の図のような格子状の道がある。 スタートの場所か ③53 ら出発し, コインを投げて、 表が出たら右へ1区画進A み、裏が出たら上へ1区画進むとする。ただし、右の 1ml 右出別 右 出 別 た オ 指 A と ! F C

解決済み 回答数: 1