学年

教科

質問の種類

数学 高校生

仮説検定の問題で考察しよと書いているのは 証明のような文もいるということですか? 判断できるできないだけでいいのですか? すみません、仮説検定の意味がよくわかっていなくて 変な質問かもしれませんがお願いします。

98 第5章 29 仮説検定の考え方 例題 仮説検定の考え方 104 あるさいころを30回投げたところ、 1の目が1回しか出なかった。 このさいころは1の目が出にくいと判断してよいか。 仮説検定の考え 方を用い, 基準となる確率を0.05 として考察せよ。 ただし, 公正なさ いころを30回投げて1の目が出た回数を記録する実験を300セット 行ったところ、次の表のようになったとし, この結果を用いよ。 1 2 3 4 5 6 7 8 9 10 11 計 1の目が出た回数 0 度数 1 8 22 41 55 58 48 33 19 9 4 2300 解答 [1] 1の目が出にくい と判断してよいかを考察するため, [1] の主張に反する次の仮定を立てる。 [2] どの目が出ることも全くの偶然で起こる 18. 89 公正なさいころの実験結果から, 1の目が出た回数が1回以下である場合の相 対度数は 1+8 9 300 1300 -=0.03 これは 0.05より小さいから, [2] の仮定は正しくなかったと考えられ, 主張 [1] は正しいと判断してよい。 すなわち, 1の目が出にくいと判断してよい。 26 K

回答募集中 回答数: 0
数学 高校生

175.2.3 答えを導くまでの記述に問題はないですよね?

したもの 点のx座 すると、 5 x=-1 gcb gea loga.M+I x=1 から ニ t 基本例題 175 対数の大小比較 | 次の各組の数の大小を不等号を用いて表せ。 (1) 1.5, 10g35 点のx座標 ALUMIST 指針 対数の大小比較では, 次の対数関数の性質を利用する。 a>1©¢\0<p<q⇒loga p<loga q 大小一致 0<a<1のとき 0<p<glogp>logag 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し, 底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 係をいた 【CHART 対数の大小 底をそろえて 真数を比較 解答 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 貸付 (3) (3) 4数を正の数と負の数に分けてから比較する。 また, 10g32, 10g52の比較では, 真数がともに2であるから, 底を2にそろえると考えやすい。 (1) 1.5=2=log:3=log:31 ** (31)²-3¹-27>5² また 底3は1より大きく35であるから log332>log3 5 したがって 1.5 >log35 (2) 22102210g222=10g24, log49= 底2は1より大きく, 3 <4<5であるから log23 <1024 <1025 すなわち 10g9<2<log25 0.5は1より小さく, 3>2>1 であるから logo.53 <logo.52 < 0 log52= 1 log32= log23 1 <3 < 5 であるから よって すなわち したがって 0 log25 log23² 10222 -=10g23 0<log23<log25 1 1 log25 10g23 練習 2175 (1) 10g23, 10g25 logaq 1 logapty 0 0<log52<log32 logo.53<logo.52 <logs 2 <log:2 で, 底2は1より大きく, S YA a>1 次の各組の数の大小を不等号を用いて表せ。 (2) 10go.33, 10go.35 p 00000 y=logaxのグラフ gx y 0<a<1 10gap OP logag Syz 底はそろえよ <A> 0, B>0ならば A>B⇒A²>B² 底の変換公式。 9 不等号の向きが変わる。 <指針のy=logaxのグラフ から, α>1のとき 0<x<1⇔logax < 0 x>1⇔10gax>0 0<a<1のとき 0<x<1⇔10gax>0 x>1⇔logax < 0 p.293 EX113 (3) logo.54, log24, log34 x 275 5章 31 対数関数

回答募集中 回答数: 0
数学 高校生

182.2 k≦log10 N<k+1なので「ゆえに...」の部分を丁寧に書くと、 38.905≦log10 6^50<39より、38<log10 6^50<39であり、38.905≦log10 6^50<39の部分を解答では省略しているのですか? (38.905≦log1... 続きを読む

N<k logN<- 示し る。 基本例題 182 常用対数を利用した桁数, 小数首位の判断 ①①①①① logio2=0.3010, log103=0.4771 とする。 (1) 10g105, 10g100.006, logio√/72 の値をそれぞれ求めよ。 (2) 650 は何桁の整数か。 る。 1 / 2 \100 3 (3) HHOTTOMNE 指針 (1) 10 で, 10g10 2, 10g103 の値が与えられているから,各対数の真数を2,3, 10の累 乗の積で表してみる。 なお, 10g105の5は5=10÷2 と考える。 (2),(3) まず, 10g106% 10g10 を求める。 別解 あり 解答編p.181 検討 参照。 解答 を小数で表すと, 小数第何位に初めて0でない数字が現れるか。 scusa 01 p. 284, 2 「正の数Nの整数部分が桁⇔k-1≦loguN <k 正の数Nは小数第位に初めて0でない数字が現れる⇔-k≦1010N 【CHART 桁数,小数首位の問題 常用対数をとる 10 log. (1) 10g105=10g10=10g1010-logio2=1-0.3010=0.6990 logad = 10g100.006=10gio (2・3・10-3)=10g102+ 10g103-310g1010 = 0.3010+0.4771-3=-2.2219 ******** ゆえに logiu√72=10g10(23.32) 11 (310g102+210g103) 2 TOOTH ( 3×0.3010+2×0.4771) = 0.9286 (2)10g106505010g106=5010g10 (2・3)=50(10g102+10g103) 練習 ② 182 2\100 3 =50(0.3010+0.4771)=38.905 ゆえに 38 <10g10650 <39 よって 1038 <650 <1039 したがって, 650 は 39 桁の整数である。 (3) logi()100- =100(10g102-10g103)=100(0.3010-0.4771) 3 =-17.61 -18 <10g10 10-18< 100 2 <-17 <-k+1 3388520T AT 383 ROKS <10-17 10g1010=1 [重要] 10g15=1-10g102 この変形はよく用いられる。 1√Ã= A ² 53.0 ならば, Nの整数部分は (k+1) 桁。 100 2 よって *< ( 1 ) ¹⁰° < ゆえに,小数第18位 に初めて 0 でない数字が現れる。100mgor (2) 10MN <10%+1 (3) 10 N10-k+1 ならば, Nは小数第位 に初めて0でない数字が現 れる 881 logı2=0.3010, logw3=0.4771とする。 15' は桁の整数であり, ( 2 3 ) 100 は小数第1 1位に初めて0でない数字が現れる。 p.294 EX118 章2 5章 32 常用対数

回答募集中 回答数: 0
数学 高校生

175.3 訂正後の記述に問題はないですかね??

例題165同様、 け平行移動したもの フと対称 フと対称 フと対称 昇する。 軸との交点の (真数) = 1 とすると, x+3=1から x=-1 logeb logea logab=i oga MN=loga Me 軸との交点の x-8-1から log, (4x-8) 基本例題 175 対数の大小比較 次の各組の数の大小を不等号を用いて表せ。説明 (1) 1.5, log35 (2) 2, log49, log25 (3) logo.53, logo.52, log32, log52 p.273 基本事項 ② 指針 対数の大小比較では,次の対数関数の性質を利用する。 a>1のとき0<b<glogap<logag AUTO 大小一致 関係をいた 0<a<1のとき 0<p<glogp>logaq -------------- に関する箇所 ージで触 CHART 対数の大小 底をそろえて 真数を比較 大小反対 (不等号の向きが変わる ) まず異なる底はそろえることから始める。 (1) 小数 1.5 を分数に直し,底を3とする対数で表す。 (2) 210g49を底を2とする対数で表す。 (3) 4数を正の数と負の数に分けてから比較する。 ・........ 0 また, 10g32, 10g52の比較では, 真数がともに2であるから 底を2にそろえると考えやすい。 解答 0x T (1) 1.5 = 3 3 2 = -log33=log3 32 また (32)=3327>52 & 底3は1より大きく35であるから したがって ( 22210g2=10g222=10g24, 底2は1より大きく, 3 4 <5であるから log33ž>log35 1.5 >log: 5 すなわちょ<0.2 x 1218 同値では10g232 log49= ED ECC =10g23 log23<log24 <log25 すなわち 10g9 <2<log25 (3) 底0.5は1より小さく,3>2>1であるから H logo.53<logo.s2<0 (175 1 log23' すなわち したがって log22² 6-1 log32= log52= 1 <3 <5であるから 0<log23<log25 moke (Fall-colto 13___1 よって 0< log25 で,底2は1より大きく log25 log2 3 2175 (1) log23, log25 はな よいお願 0<log52<log32 logo.53 <logo.52 <logs 2 <logs2 10gag log.pt 0 ye 次の各組の数の大小を不等号を用いて表せ。 10144 p y=logaxのグラフ a>1 q x y 0<a<1 logap OP loga q 底はそろえよ 1 9 <A > 0, B>0ならば A>B⇔A'>B' 底の変換公式。 のように 不等号の向きが変わる。 指針のy=10gaxのグラフ から, 0<a<1のとき α>1 のとき 0<x<110gax<0 x>1⇔10gax>0 0<x<1⇔loga x>0 x>1⇔logax < 0 Op.293 EX113, (2) logo.33, logo.35 (3) logo.54, log24, log34 275 5章 31 対数関数

回答募集中 回答数: 0