学年

教科

質問の種類

数学 高校生

2枚目画像のR(S=2)のところで、確率を求めている式の真ん中の3!/2!が何をしているのかがわかりません。教えてください。

第3問 場合の数 確率 【解説】 以下では, 東方向への移動を 南方向への移動を 西方向への移動を 北方向への移動を↑ とし,点Aから出発する経路と4種類の矢印の並べ方を対応さ せて考える.例えば,→→→ という並べ方に対しては次図の (a)の経路が対応し、という並べ方に対しては次図 の (b) の経路が対応する。 逆に,点Aから出発する経路を1つ定め ると,それに対応する矢印の並べ方が1つ得られる。 (コ) B B 「よりも左側に↓があるものの個数を考える。 まず、 、 、 の並べ方が, -=35 (通り) あり、その各々に対して4個の□への 1, 1, 1, ↓の配置の、 仕方が 4, 1, 1, ↑ *1, 1, 1. t 1. 1. L. 1 の3通りずつあるから, 北方向への移動を3回, 南方向への移動 を1回 東方向への移動を3回行うような移動の仕方の数は、 例えば、4個のと3の一の並べ 35通りのうちの1つとして。 ローローロー 35x3 105 (通り)。 四 南北の4枚のカードから無作為に1枚を引く 2 がある。 このとき、条件を満たすように 3の1と1個のを口へと配置す ることで. A (b) (1) 点Aを出発し, 5回の移動後に点Bにいる移動の仕方の数は 1. 1. →,,の並べ方の個数であるから, 5! = 10 (通り)。 2!3! 同じものを含む順列 (2) 点Aを出発し、7回の移動後に点Bにいる移動の仕方のうち、 点Cを通るものは、点Aから点Cに移動するまでに2回, 点 から点Bに移動するまでに5回の移動をすることになる。 点Aから点Cまでの移動の仕方の数は1の並べ方の個数 であるから. のもののうち、αが、 . が ...... あると これらのものを並べてでき 順列の総数は、 (通り) mimi (n=m₁+m+ +m₂) 2!=2 (通り)。 である。 この各々に対して,点Cから点Bまでの移動の仕方の数は 「. の並べ方の個数だけあるから, =5 (通り)。 よって, 点Aを出発し、7回の移動後に点Bにいる移動の仕方 のうち,点を通るものの数は, (通り). また北方向への移動を2回, 西方向への移動を1回 東方向 への移動を4回行うような移動の仕方の数は 1. 1.←→,→ →の並べ方の個数であるから, とき 引き力は4通りあり、これらはすべて同様に確からしい。 よって,, . 1.の移動が起こる確率はすべてである。 ただし、試行を行った点において、道がない方向のカードを引い た場合は移動ではなく Stay が起こる。 (3)点Aを出発し、5回の試行後に点Bにいるのは、 が2回, が3回起こる場合である。 (1)より,その確率は、 -1-1-11 [1] →1→1→ 11-1-1- の3通りの並べ方が得られる。 (4)( (4) 点Aを出発し、7回の試行後に点Bにいるような事のうち. Stay がちょうどk 回 k=0.2) だけ起こる事象をR(S=k) と す。 まず、R(S-2)のうち, D, を過るものについて考える. このとき、最初の2回の試行でDに到達する必要があるから、 が2回起こればよく、その確率は、 Stay がちょうど1回だけ起こると 残りの6回の試行では、7回の行に にいるように移動することができ ない。 また, Stay が3回以上起こると 残りの4回以下の試行ではBに することができない。 (+ さらに、残りの5回の試行で その事は、 が起これば試行でD, からBへ到するに (+)(4)-10(4) よって、 R (S2) かつ 「D, を通る」 確率は, 8. 105 (通り) ... 次に,R(S-2)のうち、D, を通らずにDを通るものについ て考える。 次に,f, f, f. 4.,,の並べ方のうち、3個目の このとき、最初の3回の試行でD, を通らずに D2 に到達する必 25- はが3回起こる必要があり、残りの2 回でStay. つまり「がない」が起 こればよい D, D, D, B

回答募集中 回答数: 0
数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0