学年

教科

質問の種類

数学 高校生

なぜ傾きが√3だったら角OAP=60°とわかるんですか?

123 放物線と円 5 放物線y=- 8 この円と放物線で囲まれる部分の面積を求めよ。 ただし, 円と放物線が共有点Pで接するとは, その点で同じ接線をもつこ とである. ( お茶の水女大) 点A(0, 2) を中心とする円が異なる2点で接するとき、 一般に、2曲線 y=f(x), y=g(x) 解法のプロセス が接するというのは、 “共有点Pを 島精講 もち,Pにおける接線が一致する” ことです. 共通接線がy軸と平行となる場合を除けば、 [f(a)=g(a) となる実数αが存在する [ƒ'(a)=g'(a) ことです. 本間では 放物線と円が点P で接する ⇒ 放物線上の点Pにおける接線がAを中 心とする円の接線でもある APLI [P は円上の点(APは円の半径) といいかえることができます. S=p^ 解答 放物線上の点P(t.ford) (10) における接線の傾きはであることから YA -t²-2 APHI⇔ t したがって,接点はP ( 13 3. Cos).p(-1/31/3号/5) P(-√3, 13, St -t=−1 半径 AP= √ ( 1/2 √ 3 ) ² + ( 15 - 2)² = = 放物線と円がPで接する ↓ 放物線の接線が円の接線 ↓ 円の中心がAなので APLI AP は円の半径 面積= 4 t = ± √√√3 8 5 この傾き=√3 より 求める部分の面積Sは,上図の斜線部分だから ∠OAP = 60° ..∠P'AP=120° s P" A 2 P扇形 APP (α=-1/3√3,B=1/12/3 とおくと)

解決済み 回答数: 2
数学 高校生

ベクトルに関する問題です。線が引いてあるところがなぜそうなるのかわからないです。

152 2つのベクトルに垂直な単位ベクトル 2つのベクトルa=(2,1,3)と=(1, -1, 0) の両方に垂直な単位ベクトルを 00000 求めよ。 基本例題 y, z) とすると ・求める単位ベクトルを= (x, [1] lel=1*5 let=1 [2] 前方から ae=0, be=0 これらから、x,y, 2の連立方程式が得られ,それを解く。 なお、この問題はp.404 基本例題13 を空間の場合に拡張したものである。 CHART なす角 垂直 内積を利用 求める単位ベクトルをe= (x, de le であるから よって 2x+y+3z=0 1, x-y=0 また、el=1であるから?x+y+z=1 ②から y=x 更に①から これらを③に代入して ゆえに 3x2=1 y, z) とする。 a⋅e=0, b·e=0 e=+ よって u |u| x=-x x2+x2+(-x)=1 1 x=± √√3 【検討 2つのベクトルに垂直なベクトル a=(a₁, az, az), b=(b₁,b₂, b3) KXFL u=azbs-asbz, asbi-abs, arbz-a2bi) はとの両方に垂直なベクトルになる。 各自, qu=0,u=0 となることを確かめてみよう。 また、こ p.489 参照。 このとき 1/11/1/13号同順) 2=F₁ √3 したがって, 求める単位ベクトルは =(//////)(/1/11/11/1) 上の例題では,u=(3,3,-3), lul=3√3から Laに垂直なベクトルの1つ 土 =(1,1,-1) (信州大) 詳しくは の外積という。 「は」として扱う 1.460 基本事項 基本 a₁ b₁ ◄el²=x² + y² +2² b 1 < = + ( + 7/3 + + 3 (3-7) でもよい。 の計算法 X> 463 /3 a3 XXX. ab2a2b1abs-asbababy (2成分) (成分) (y成分) 各成分は の横) (の横) ar 2章 8 空間ベクトルの内積 練習 4点A(4, 1,3), B(3, 0, 2), (-3, 0, 14), D (7, -5, 6) について, AB, 52 CD のいずれにも垂直な大きさのベクトルを求めよ。 [ 名古屋市大〕

回答募集中 回答数: 0