学年

教科

質問の種類

数学 高校生

セ、ソについて、私は2枚目の右側に書いてある様に考え、円の斜線部分が答えになると思ったのですがなぜ答えと異なってしまうのか教えて下さい!因みに答えは6、7で合ってます。

数学ⅡⅠ 数学 B 第1問 (必答問題) (配点 30) [1] 0 を実数とする。 x の方程式 4x³-3x+sin 30=0 を考える。 (注)この科目には、選択問題があります。 (23ページ参照。) て であることと, sin (20+0) = エ と表せる。 2 sin20= ア sin Acos 0, sin30= I の解答群 となる。 ⑩sin 20 cos0 + cos 20sin0 ② sin 20cos0-cos 20 sin0 したがって ① は オsino- x = sin0, -sint サ cos 20 = 1 sin e であることから, sin30 は sin0を用い sin³0 4x-3x+3sing-45m² (x-sind){4x2+キ (sine)x+ 7sin¹0- ) 12x2sing と変形でき, ① の解を0を用いて表すと コ - ① cos 26cos8+ sin 20sin0 ③ cos 26cose-sin 20sin0 cos o 2 ウ -25inA ± √ 45i ²0- 4 (4 sia-3), =0 4ズーラ(+sing(3-4sin日) 1 - 3+45in 4 (数学ⅡI・数学B 第1問は次ページに続く。) -sing± sine-4sinto +3 42 (4x - 3+45in²0) -sino 510(1-4 -3sin' +3 (1-sin A A A - sin0+ f(0) = sing 4 コ cos 4 g(0)= サス とすると, y=f(8) のグラフの概形はシ y=g(8) のグラフの概形は カスであるら 1 - sine- 0 -3 4sine 4sin' 45ina 45ino-3 3sing-45in' -3 sine +45in 数学ⅡI・数学B = cos y N N in in A O x については,最も適当なものを,次の⑩~⑤のうちから一 つずつ選べ。 ただし, 同じものを繰り返し選んでもよい。 サス -0 (数学ⅡⅠ・数学B 第1問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

この問題を教えてください🙏 考察1から3までよろしくお願いします🙇‍♀️

y=-4, を利用した数列の和の求め方 20ページでは、 21 「差の形」 に kを求めるときに(k+1)-kという 着目した等式を利用した。また、26ページの例題8において、 (+1) 1/14 & k を求めるときにも, 「差の形」に着目した等式 利用した。 72 一般に, 数列の和 20g について k】 H ak = Ak÷1¬Ak となる数列{A} を求めることができれば 20k=Ah+1-A1 が成り立ち、その和を求めることができる。 視点 1 k(k+1) 72 22 + ·) a (2) (1)を利用して、kを求めてみよう。 1 k+Ⅰ これまで学んだ様々な数列の和についても、この方法で和を求めるこ とはできないだろうか。 92 13ページでは, 等差数列の和の公式の特別な場合としてkを求めた。 この和を「差の形」 を利用して求めることはできないだろうか。 A Az Ax-i-Az A₁ Žax = Anti 考察1 (1) 46=1/12 (k-1)kについて,等式k=Asto-A が成り立つこと を確認してみよう。 22ページの例21で求めた 2k(k+1) についても考えてみよう。 考察2 (1) k(k+1)=Bk+i-B を満たす数列{B}を求めてみよう。 (2)(1) を利用して (+1) を求めてみよう。 (1) (k + 2) も 考察 1 や考察2と同様の方法で求められないだろ うか。また、2k 2k(k+1)(k+2)(k+3) はどうだろうか。

回答募集中 回答数: 0