学年

教科

質問の種類

数学 高校生

(2)の問題の水色マーカー部分がわかりません。なぜこのような式になるのか教えてもらえると嬉しいです。

☆☆☆ 00 89 置き換えを用いる方程式の立 次の方程式を解け。 (1) x4-4x²-12=0 ★★☆☆ 立 (2)3(x-2)^2(x-2)-8=0+x| (1) いずれも4次方程式であり,このままでは難しい。 「既知の問題に帰着 Action 式に共通な部分があれば、1つのものとみて考えよ 例題5 (2) xの4次方程式 □ = Xと 置き換える xはすべての実数 Xの2次方程式 Xの範囲 立 noitA lioAction 文字を置き換えたときは,その文字のとり得る値の範囲を考えよ 例題76 (1)x2 = X とおくと, x≧0 より X≧0 与えられた方程式は X2-4X-12=0 (X-6) (X+2) = 0 X≧0より X = 6 よって, x2 = 6 より x=±√6 (2)x2 = X とおくと, x2 ≧0 より X = x-2≧-2 与えられた方程式は 3X2-2X-8 = 0 x2 3 章 8 が常に成り立つか 6 X 20) (S) (X-6) (X+2)=0 のうち, X≧0 を満 たすものを求める。 2次関数と2次方程式 (3X+4) (X-2) = 0 4 X≧-2 より X= 2 3 4 (ア) X=-- のとき 3 x2-2= 43 より 23 √6 よって x=± (イ) X = 2 のとき x2-22 より x=±2 3 x2=4 8-(-)-1= 387 (3X+4) (X-2)=0 のうち, X-2 を 満たすものを求める。 分母を有理化する。 |2|3 0-(6-S + √2√3 =± *** S √3/3 √6 =± 3 € よって √6 (ア)(イ)より x=± 3 +2 (28) +00-001 人 89 次の方程式を解け。 (1)x-3x²-4 0 (-) - (2)2(x+1)-5(x2+1)-12 = 0 167 p.180 問題89

未解決 回答数: 1
数学 高校生

1枚目のマーカー部分の問題が分かりません。なぜ定義域の中心の値はa+1/2なのでしょうか。まずこの関数の定義域が分かりません。そしてこの問題はなぜいろいろ定義域を使って考えるのですか?根本から問題の解き方がわかりません。回答よろしくお願いします🙇🏻‍♀️

例題22 定義域が動く場合の最大・最小 解答 第2節 2次関数の値の変化 49 針■■■ 辺の長さをyとして aは定数とする。 関数 y=x²-2x+1 (a≦x≦a+1) の最小値を求 めよ。 考え方 定義域の幅は1で一定で,αの増加とともに定義域全体が右に移動する。 (解答) グラフが下に凸のとき,軸に最も近いxの値で最小値をとる。 これより,軸x=1の位置について以下のように場合分けをする。 [1] 定義域の右外 [2] 定義域内 [3] 定義域の左外 y=x²-2x+1を変形すると y=(x-1)2 よって、この放物線の軸は直線x=1, 頂点は点 (1, 0) である。 また x=αのときy=α2-2a+1, x=a+1のときy=a² [1] α+1 <1 すなわち a<0 のとき x=α+1で最小値 α2 [2] a≦1≦a+1 すなわち 0≦a≦1のとき x=1で最小値 0 [3] 1 <a のとき x=αで最小値α² -2a+1 第3章 2次関数 2辺の長さの和が12 角をはさむ2辺の 方の定理よりを 最小値を 辺の一方の長さ である。 0から yとすると すると x+144 1+72 あるから. 最小値 から も最小となる める最小値 E a a+1 [2] y [3] と同様に が大変であ 0a 1 0 1 a a+1 x a+1 =1より x2+y2 ? 163aは定数とする。 関数 y=x2-4x+3 (a≦x≦a+1) について,次の問いに 答え *(1) 最小値を求めよ。 * (2) 最大値を求めよ。 (3) (1) で求めた最小値を とすると は αの関数である。この関数のグ ラフをかけ。 (4)(2)で求めた最大値をMとすると,Mはαの関数である。この関数のグ 2+ y² 1± y=] x= 3=0 xy ラフをかけ。 ヒント 163 (2) 軸が定義域の中央より右, 中央, 中央より左で場合を分ける。

解決済み 回答数: 1