学年

教科

質問の種類

数学 高校生

数Ⅱ 軌跡の問題です。 亅の部分までわかったのですが、赤線部分の計算がわかりません 解説お願いします🙇

PR ③100 直線 2x-y+3=0 に関して点Qと対称な点をPとする。 点Qが直線 3x+y-1=0 上を動く とき、点Pの軌跡を求めよ。 第3章 図形と方程式 121 直線 3x+y-1=0 ・① 上を動く YA ② 点をQ(s, t) とし, 直線 2x-y+3=0 (s,t) ② に関して 点Qと対称な点をP(x, y) とする。 [1]点PとQが一致しないとき,直線 PQが直線② に垂直であり,線分 PQの中点が直線 ②上にあるから t-y y+t 1-2.2=-1, 2.x+8 +1 + S-x 1 0 +3= 0 (1) P(x,y) x よって s+2t=x+2y, 2s-t=-2x+y-6 s, tについて解くと 垂直 ⇔ 傾きの積が1 線分 PQ の中点の座標 は (xts, y+) -3x+4y-12 4x+3y+6 S= t= 5 5 2 s,t を x, y で表す。 点 Qは直線 ①上の点であるから 3s+t-1=0 ③④に代入して -3x+4y-12_4x+3y+6 3・ --1=0 <st を消去する 5 整理すると x-3y+7=0 ⑤ [2]点PとQが一致するとき, 点Pは直線 ①と②の交点で y=11 5 2 あるから x=-- 5' これは⑤を満たす。 以上から、 求める直線の方程式は x-3y+7=0 PR ④101 方程式 ①と②を連立 させて解く。 xy 平面において, 直線 l:x+t(y-3)=0, m:tx-(y+3)=0 を考える。 tが実数全体を動く とき,直線lとの交点はどのような図形を描くか。 [類 岐阜大 ] l:x+t(y-3)=0 :①, m:tx-(y+3)=0 [1] x=0 のとき,②から t=y+3 x x+y+3(y-3)= 0 これを① に代入して x 両辺にxを掛けて x2+y2-9=0 ② とする。 y+3 を利用する x ため, x=0 と x=0 の 場合に分けて考える。 3 PR

解決済み 回答数: 1
数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1