学年

教科

質問の種類

数学 高校生

問題(1)の前提で出されている重さの平均12gと標準偏差4gは、問題で出されている標本平均の平均[ア]と標準偏差[イ]とで何が変わるのですか? ちなみに答えは[ア]が12、[イ]が4/√10=0.4でした。 ↑12gと4gじゃないのはなぜ? 解説に出てきた母平均と母標準偏差... 続きを読む

数学Ⅱ 数学 B 数学 C [第4問~第7問は,いずれか3問を選択し, 解答しなさい。 第5問 (選択問題) (配点 16) 以下の問題を解答するにあたっては,必要に応じて23ページの正規分布表を用 いてもよい。 また、 以下の問題では、標本の大きさ 100は十分大きいと考える。 (1) 工場A で製造されたボルト1個の重さの平 均は12.0g) 標準偏差は4.0g) である。 工場 A で製造されたボルトから無作為に大きさ100 の標本を取り出して重さを調べた。 このときボルト1個の重さの標本平均 XA は平均 ア 標準偏差 の正規分布に近似的に従う。 XA ア 12 確率変数 Y を Y = - とすると,Yは平均 ウ 標準偏差 イ 4 エ の標準正規分布に近似的に従う。 26 標本平均 XA が 12.7より大きくなる確率は0. オカである。 ア イ の解答群(同じものを繰り返し選んでもよい。 ① 0.16 ② 0.20 ③ 0.40 ④ 1.0 ⑤ 2.0 ⑥ 4.0 ⑦ 6.0 ⑧ 12.0 ⑨ 16.0 (数学II, 数学 B 数学C第5問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

まるで囲った2枚目の式が分かりません💦

(2)ある地域のタクシー会社のタクシー料金は、最初の1kmまでが500円で,そ の後は走行距離に応じて100円ずつ加算される。また,目的地に到着したときに 支払う料金を運賃という。 H ~90円 近年、キャッシュレス決済 (現金を使用せずにお金を払う方法) への対応やド ライブレコーダーの設置, アルコール検知器を用いた検査の義務化などによりタ クシー会社の負担が増したため、 来年から次のように運賃を改定することを検討 している。 【キャッシュレス決済の場合】 目的地に到着後の運賃を3%増額し、100円未満の金額を切り捨てた金額を 改定後の運賃とする。 【現金払いの場合】 目的地に到着後の運賃を3%増額し、100円未満の金額が50円以上のときは その金額を100円に切り上げ, 50円未満のときは100円未満の金額を切り 捨てた金額を改定後の運賃とする。 改定前に6000円だった運賃について、 改定後の運賃は 103 キャッシュレス決済の場合はイウ×100円 6000x leg 現金払いの場合はエオ×100 円 ・60x103 6180 となる。 =6100 運賃の改定後に200円の値上げとなるような改定前の運賃の範囲は (+200)円 xx100 キャッシュレス決済の場合はカキ×100円以上 クケ ×100円以下 103 (x+200)×100 現金払いの場合は コサ×100円以上 シス×100円以下 103x+206 100 である。 運賃の改定後にキャッシュレス決済と現金払いの差が最大となるような改定前 の運賃のうち、最小の運賃はセソ ×100円である。 キャッシュしす

回答募集中 回答数: 0
数学 高校生

教えていただきたいです( . .)"

- 分散 である。 おくと, 92 難易度★ 90 60 目標解答時間 SELECT SELECT 15分 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 (1)ある学校で生徒会長選挙が行われた。 100人の生徒が投票し、そのうち36 人がAさんに投票した。 投票した100人のうち1人を選ぶとき,その人がAさんに投票していたら 1,投票していなければ 0の値をとる確率変数を Xとする。 ア Xの期待値は 標準偏差は エオ カキ である。 (2)2人の議員を選ぶ選挙が行われ,100万人の有権者が投票した。 この選挙ではより多い得票率 があれば確実に当選する。 開票率 1%, すなわち 10000人分が開票されたとき, Bさんに3600票 が入っていた。この開票された票を無作為に選ばれた標本とするとき, 標本比率は である。 これをBさんの得票率の母比率の推定値とする。 また, 母標準偏差もここから推定される であるとする。 エオ カキ ケ ここで、 10000 は大きいから,標本比率は近似的に正規分布 Np に従う。 コサシ に対する信頼度 99%の信頼区間は 得点の2 ク ケ ス セン × = 0.99 イウ コサシ ことがわ より, 小数第4位を四捨五入すると 0. タチツ Sp0 テトナ 点 10) 法集 107 である。 これより,p> 1/23 と推定できるので,Bさんは「当選確実」と判断できる。 (3)2人の議員を選ぶ選挙が行われ, 10万人の有権者が投票した。この選挙では 1/3 より多い得票率が あれば確実に当選する。 N人分が開票されて, 36% がCさんに投票していた。 Cさんの得票率の母 比率がに対する信頼度99%の信頼区間が(2) と同じ信頼区間で 「当選確実」 と判断することができ るとき, N= である。 二 | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ 100 500 1000 141 10000 (配点 10) (公式・解法集 109 統計的な

回答募集中 回答数: 0
数学 高校生

至急お願いします🙏🙏🙏 解き方教えてください🙏

16 目標解答時間 8分 35 難易度 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし、岩盤浴のみを利用 することはできない。 大人料金と子ども料金は,それぞれ次のようになっている。 大人 子ども 入館料 800 円 600円 岩盤浴利用料 400円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」 さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、 次のことがわかった。 「温泉利用者」 の90%が 「大人」 である。 「温泉利用者」 の80%が 「 岩盤浴利用者」である。 「岩盤浴利用者」 の5%が 「子ども」 である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し, 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」のうち, 「子ども」 の 「岩盤浴利用者」は (2)「温泉利用者」 のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が,「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10) (公式・解法集 43 44

回答募集中 回答数: 0
数学 高校生

至急教えて頂きたいです🙇‍♀️🙇‍♀️ 解き方教えてください🙏

16 目標解答時間 8分 35 難易度 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし、岩盤浴のみを利用 することはできない。 大人料金と子ども料金は,それぞれ次のようになっている。 大人 子ども 入館料 800 円 600円 岩盤浴利用料 400円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」 さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、 次のことがわかった。 「温泉利用者」 の90%が 「大人」 である。 「温泉利用者」 の80%が 「 岩盤浴利用者」である。 「岩盤浴利用者」 の5%が 「子ども」 である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し, 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」のうち, 「子ども」 の 「岩盤浴利用者」は (2)「温泉利用者」 のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が,「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10) (公式・解法集 43 44

回答募集中 回答数: 0