学年

教科

質問の種類

数学 高校生

軍数列を解く時のコツってなんですか?何からやればいいのか分からないです

1から順に並べた自然数を 12, 34, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 1516, のように,第n群 (n=1, 2, ...) が2"-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ. (2)第n群に含まれる数の総和を求めよ. (3)3000 は第何群の何番目にあるか. 精講 ある規則のある数列に区切りを入れてカタマリを作ってできる群数 列を考えるときは, 「もとの数列で、はじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します. 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて 各群の最後の数が基 (1+2+..+2"-2) 項目 . 準 第 (n-1) 群 2-1-1- 第n 群 ***, 3000, 2"-1 2-1 ここで,2''=2048, 22=4096 だから 2" <3000<212 ∴.n=12 よって, 第12群に含まれている。 第 (n+1) 群 このとき,第11群の最後の数は, 2"-1=2047 だから, 2n 注1.第12群に含まれているとき, 第12群の最初の数に着目すると 3000-2047=953 より, 3000は第12群の953番目にある. 3000-2048と計算しないといけません. 逆にひき算をすると答 がちがってしまいます。 注2 (3) 2行目の 2"-130002"は2" ' 3000≦2"-1 でも、 2-1-1<3000≦2"-1 でもよいのですが,(1)を利用すれば解答の形に なるでしょう。 注3.(1),(2)はnに具体的な数字を入れることによって検算が可能です。 ポイント すなわち, 2-1-1) 項目だからその数字は 2"-1-1 等比数列の和の公式 を用いて計算する よって,第n群の最初の数は (2-1-1)+1=2"-1 (2)(1)より第n群に含まれる数は 初項 2-1 公差 1, 項数 2"-1の等差数列. よって, 求める総和は 11.2"-1{2.2" '+ (2"-1-1)・1} 2 =2"-2(2・2"-'+2"-1-1)=2"(321) 解) 2行目は初項 27-1 主 演習問題 131 もとの数列に規則のある群数列は, I. 第n群に含まれる頃の数を用意し Ⅱ. 各群の最後の数に着目し Ⅲ. はじめから数えて何項目か と考える 1から順に並べた自然数を 1|2, 34, 5, 6|7, 8, 9, 10|11, 12, 13, 14, 15/16,

回答募集中 回答数: 0
数学 高校生

(1)を部分分数分解ではなく、x=2sinθと置いたのですが、それだとダメなんでしょうか?

206 第6章 積分法 基礎問 113 区分求積法 定積分を用いて,次の極限値を求めよ. n2 122 n² + (1) lim n4n2 12 4n2-22 ++・・・+ 4n2 (2) lim +k (2) lim dx 1 = (2+2) 189 207 =1/-10g(2x)+10g(2+1)=1102/11083 1 nk=n+1k →頭に「一」 がつく理由は, 86 ポイント参照。 1 27 n -=lim n→∞nk=n+1k =lim 11 n―00 n k=n+1 k n --log-log2 精講 limΣの形をした極限値を求めるとき, Σ計算が実行できればよい のですが、そうでないときでもある特殊な形をしていれば極限値を k 公式によれば, n 積分の範囲が1→2となる理由を考えてみましょう。区分求積の 求めることができます. →とかわっています. だから, n→∞としたと k それが 「区分求積」といわれる考え方で,その特 殊な形とは YA きの n y=f(x), の範囲がxの範囲ということになります。 n+1sks2n n // ( n+1 nn において, lim 2n -=1, lim lim nk=1" (円) n→∞ n n→∞ n -=2 であることより, 1≦x≦2とな ります。 です. 右図で斜線部分の長方形の面積は1/12 (1) で表 12 nnk-1' 3x n k ポイント せます。 lim 1.2m)=f(x) dr n→∞nk=1 dx よって、21(h)は,図のすべての長方形の総和です。ここで,n(分割 x=1で囲まれた面積に近づくと考えられます。 以上のことから, lim 1 ½ ½ ƒ ( h² ) = f f ( x ) d x n→00 n k=1 ということがわかります. 数) を多くすると曲線より上側にはみでている部分はどんどん小さくなります。 そして最終的にはy=f(x), x軸, 2直線 x = 0, 参考 分割数を倍にすると幅が半 分になるので,この部分だ け小さくなる y=f(x) a b-a bx a+k. n x lim b-a n 12 00 n k=1 n f(a+k.ba) = f(x)dr 区分求積の公式の一般形は下のような形 ですが, 大学入試では上の形でできない ものは出題数が少なく、出題されてもか なりの上位校に限られていますので、ポイントの 形で使えるようになれば十分です. y=f(x) b-a n - a fla+k⋅ b - a). b-a 解 (1)(与式)=lim7_12 non k=1 4n-k² lim 12 1 n→∞nk=1 (k' 4- An 演習問題 113 Elim n+2k の値を求めよ. nwk=1n2+nk+k2 第6章

未解決 回答数: 1
数学 高校生

2の(3)の解説に線を引いた部分がわからないです

実 擬力 Date k=2が2直 テスト2 2次 2 13 ①と問題を比較をして, a, b, c, 2+ 4+ 13 dの値を探しましょう. 1 1 1 1 a+ 2+ 1 2+ ⑥ + 1 1 1 4+ C+ 3 d 以上より 傾きを求めて y=ax+b に代入 y切片を求めて完成してもよい 点A(-3, 9), C (4, 16) を通 (4,16) る直線 C y-9=- 9-16 -3-4 {x-(-3)}より A (-3, 9) B(1,1) y=x+12 0 a=2,b=2,c=4,d=3 となります。 点B(1, 1), 点C (4, 16) を通る ② x = 2 答え: α = 2,6= 2,c=4,d=3 直線 y-1= 1-16 1-4 (x-1)よりy= 5x-4 2 解答・解説 2 右図の斜線部分に含まれる点 (x,y)でx,yともに整数となる ものについて考える。 周上の点 も含むと考え、次の問いに答え なさい。 y=x2 (4, 16 A 今回の題意からx, yが共に整数であることを踏まえて, x=2の直線 上にあるyの値に着目します (図の赤い部分). すなわち "x=2と直 ②の交点”以上 "x=2と直線の交点” 以下にあるyの整数値の 個数より 5×2-4≦y≦2+12 ②にx=2を代入 ①にx=2を代入 これより6≦y≦14 (-3, 9) B(1, 0 この範囲でyの値が整数になるのは y=6,7,8,9,10,11,12,13, 14の合計9個. (2)直線上には何個ありますか。 ◆解答・解説◆ (2) 地道に数えていくのも1つの方法ですが、今回は計算で解いてみま (3) 斜線部分内には何個ありますか。 す.x=2が2直線と交わるのでその交点のy座標に着目します。 2点(x1,y1)(x2,y2)を通る直線の求め方は y-y1= y-y2 -(x-x1) X1-X2 で求められる. ので、 05 ◆解答・解説 答え: 9個 (3)(2)の解き方を応用して x=-3からx=4までについて」が整数値 をとる個数を計算で出してみましょう. A(-3, 9),B(1,1) 84 85

回答募集中 回答数: 0
数学 高校生

集団の分散を求める時に 分散🟰二乗の平均値ー平均値の二乗を使って、それぞれ、求めているのはなぜですか?

04 基本 例題 183 分散と平均値の関係 A 00000 ある集団はAとBの2つのグループで構成さ日 グループ 個数 平均値分散 れている。データを集計したところ,それぞれ のグループの個数, 平均値, 分散は右の表のよ 20 16 24 60 12 28 B [立命館大 基本182 ▼うになった。このとき,集団全体の平均値と分散を求めよ。 指針 データ X1,X2, ......, xn の平均値をx,分散を sx2 とすると、 (A) sx²=x-(x)² が成り立つ。 公式を利用して,まず, それぞれのデータの2乗の総和を求め、 再度、 式を適用すれば, 集団全体の分散は求められる。 この方針で求める際, それぞれのデータの値を文字で表すと考えやすい。 下の解答で は,A,Bのデータの値をそれぞれ X1,X2, ......, X201,y2, ・・・・, y6o として考え ている。 なお、慣れてきたら、 データの値を文字などで表さずに, 別解 のようにして 求めてもよい。 20×16 +60×12 集団全体の平均値は 20+60 13 集団全体の総和は20×16 +60×12 解答 Aの変量をxとし, データの値を X1,X2, ......,X20 とする。 また,Bの変量をyとし, データの値を y1,y2, ......, y6o とする。 x, yのデータの平均値をそれぞれx, y とし, 分散をそれぞれ sx', sy2 とする。 x=x(x)2より,x=sx'+(x)2 であるから x²+x2+......+X20²=20×(24+162)=160×5=(x+x2+…+5 sy2=y-(v)2より, y=sy'+(y)' であるから yi2+y2+... +y02=60×(28+122)=240×43 よって, 集団全体の分散は 1 20+60 (x+x22+......+X202 +y+y2++y6o2 ) 132 20 集団全体の平均値は13 160×35 + 240×43 20 -169=30 80 別解 集団全体の平均値は 20×16 +60×12 1)+(a a)+(a-1)) =13 20+60 Aのデータの2乗の平均値は 24+162 であり, B のデータの2乗の平均値は 28+122 であるから,集団全体の分散は 20×(24+162)+60×(28+122 ) 20+60 (上) -132= 160×35 + 240 × 43 -169=30 80

未解決 回答数: 0
数学 高校生

この赤線部の式がどこからきたのかと、青線部でそれぞれの分散を足してる理由がわからないので教えてください🙇‍♀️🙇‍♀️

5章 21 し,標準偏 らばりの 基本事項 は 計算 きいことの 基本 例題 ・・2つのデータを合わせる ある集団はAとBの2つのグループで構成さ 20 グループ 個数 平均値 分散 A 16 24 B 60 12 28 れている。 データを集計したところ,それぞれ のグループの個数, 平均値, 分散は右の表のよ うになった。このとき, 集団全体の平均値と分散を求めよ。 指針 データ X1,X2, ·····, Xの平均値を x, 分散をs.2 とすると, (A) 8x=x-() [立命館大 ] 基本 177 が成り立つ。 公式を利用して,まず, それぞれのデータの2乗の総和を求め、 再度 公式 を適用すれば、集団全体の分散は求められる。 281 この方針で求める際、それぞれのデータの値を文字で表すと考えやすい。 下の解答では, A,Bのデータの値をそれぞれx, x2, X20i, Ja,.., Yao として考えている。 なお、慣れてきたら,データの値を文字などで表さずに、別解のようにして求めてもよい。 解答 分散と標準偏差、相関係数 20×16 +60×12 集団全体の平均値は =13 20+60 集団全体の総和は20×16 +60×12 ともに整数。 またBの変量をyとし, データの値を y1,y2, ......, y6o とする。 5)²} 広い。 -6)2} Aの変量をxとし,データの値を X1,X2, .....,X20 とする。 のデータの平均値をそれぞれx,yとし,分散をそれぞれ sx', sy2 とする。 =x(x)2より, x2 =sx2+(x)' であるから x²+x2+......+X202=20×(24+162)=160×35 sy'=y(v)' より,y=s,' + (y)' であるから y2+y22+....+y6o=60×(28+122)=240×43 1 x²= 20 -X20²) よい。 =5.0625 25.29 よって、集団全体の分散は 1 20+60 集団全体の平均値は13 (x12+x22+. ...... +X202 +y12+y22+・・・・・・ +yso2)-132 160×35 +240×43 131. -169=30 80 なけれ 簡単 別室 集団全体の平均値は 20×16 +60×12 20+60 =13 数 3工場 0 1 2 6 8 13 30 Aのデータの2乗の平均値は 24+ 16°であり,Bのデータの2乗の平均値は28+12%で あるから、集団全体の分散は 20×(24+162) +60×(28+122) 160×35 +240×43 -132= -169=30 80 20+60 練習 12個のデータがある。 そのうちの6個のデータの平均値は4, 標準偏差は3であ 178 残りの6個のデータの平均値は8,標準偏差は5である。 (1) 全体の平均値を求めよ。 (2) 全体の分散を求めよ。 [広島工大 ] Op.292 EX128

回答募集中 回答数: 0
数学 高校生

一番最初の式から分かりません教えてください🙏

Check 例題 284 自然数1,2, いろいろな数列の和 (1) 2 いろいろな数列 *** nについて,この中から異なる2つの自然数を選び, その積を計算する. このようにしてできる積の総和 Sm を求めよ. 考え方 たとえば, 3つの数a, b, cで考えてみると 舞台 T=ab+bc+ca が求める積の総和であり,さらに, (a+b+c)2=a+b2+c+2(ab+bc+ca) =a+b2+c+2T 2), T=(a+b+c)2- (a²+b²+c²)} ¿ts. この考え方を1, 2, 3, ......, nについて用いる. 123 n 1 2 ... n 6.2n 336 ... 3n 2 2 nn 2n3n... S=(1×2+1×3+... +1×n)+(2×3+2×4+…+2xn)+…+(n-1)×n 上の表の部分の和になっている.) 3つの数の場合と同様に考えると, (1+2+3++n)=(12+2+32++n²)+2S” であることがわかる. (1+2+3+…+n)=(12+2+32 +…+n)+2S,より, Sn= {(1+2+3+..+n)-(12+22+32+…+n2)} ( k: n \2 n k=1 11/11/12n(n+1)-1/n(n+1)(2n+1)] 考え方を参照 499 第8章 -n(n+1){3n(n+1)-2(2n+1)} 24 = 24 注 自然数1, 2,......,n (n-1)n(n+1)(3n+2) nに関して,この中の自然数んとその他の自然数との積の和は, k(1+2+......+n)k と表せる. n 1 2n(n+1)で くる。 これを用いると,2×Sn=_{k(1+2+ ・+nk2}となる. k=1 注》P=(x+1)(x+2)(x+3)×......×(x+n)の展開式はxのn次式となる. このとき x” の係数は 1, xn-1 の係数は 1+2+......+n= =1/2n(n+1)となる。 (x+n)のn個の( )について, では,x-2の係数はどのようにして求めればよいだろうか. Pを展開する際に,(x+1)(x+2), (x+3, )から数字を残り (n-2)個の()からxを選んで積を求めれば, 2個の x-2 の項を作ることができる. したがって, xn-2の係数の総和は、例題 284 と同様に考えればよい. つまり,x2の係数は -(n-1)n(n+1)(3n+2) となる. 24

回答募集中 回答数: 0