学年

教科

質問の種類

数学 高校生

2021②-5 ①蛍光ペンを引いたところの問題でいうところのカキクなのですが、前に出てるaをそのまま2乗してはいけないのですか?答えにはaの2乗=a➕1とあり、確かに途中でウエオのところでaはすでに答えが与えられてるけど、それを2乗したら出てくるはくるのですが、なぜここで... 続きを読む

44 日 第3問~第5問は、いずれか2問を選択し、解答しなさい。 第5問 (選択問題(配点 20 さま 1辺の長さが1の正五角形の対角線の長さをαとする。 (1) 1辺の長さが1の正五角形 OA,B,CiA2 を考える。 第1日程 数学Ⅱ・数学B 45 (2) 下の図のような, 1辺の長さが1の正十二面体を考える。 正十二面体とは, どの面もすべて合同な正五角形であり. どの頂点にも三つの面が集まっている へこみのない多面体のことである。 a A2 C₁ A1 B1 10. 1+30 B2 [C A: 0 B D 110 とされる。キリによ! すべて 4点( ZA,CB=31 CiA1A2 アイとなることから,AA2と BC」 は平行である。ゆえに 面 OABICA2に着目する。 OA」 と A2 B1 が平行であることから OB1=0A2+A2B1=0A2+ OA₁ AA= ウ BIC である。 また に であるから 1 BC1= 1 ウ AA2 T (OA2-OA) ウ で絞り立てみ 正 |OA2OA1|2|AA2|2 正方形ではな =80-80 + a ク また, OAとABIは平行で,さらに, OA 2 と AC も平行であることから に注意するとはない る。 BICI=B1A2+ A20+ OA] + AC1 ウ =- OA-OA2+OA」 + OA2 I - オ OA2- OA₁ 0=ab+adah となる。 したがって 1 I ウ ケ コ OA OA2= + でない を得る。 (数学Ⅱ・数学B第5問は次ページに続 補足説明 ただし、 サ は,文字 αを用いない形で答えること を得る。 (数学Ⅱ・数学B第5問は次ページに続く。) が成り立つ。0に注意してこれを解くと,a= 449-

解決済み 回答数: 1
数学 高校生

ZP-3 ソタチツ ソタチツがわかりません。前に書いてある誘導にしたがうんだろうなということまではわかったのですが、誘導の言いたいこともわからず、xとt がごちゃこぢゃしてた最終的に0<a<=1/2の時を求めると思うのですが何をしたら良いのかわからず悩んでます。 どなたかす... 続きを読む

数学ⅡI, 数学 B 数学 C 数学Ⅱ 数学 B 数学 [2] (1) α, k 実数とし, αは0でないとする。 ○(k)=f(at-1)at [zat-to/2aピード h(k)=. )=(at (at-1) dt [Lat-t] = 2a-2-(take *) である。 <a=1/2 のとき, f(t)\dt=[ ソ であるから f(t) \dt=37 - 2 a+ ツ 2 94-2 とする。それぞれについて右辺の定積分を計算すると =2a-2-ak-k a> 1> 1/12 のとき,f(t)\dt= = テ であるから a g(k)= k - k S² \ ƒ (t) \dt = ト + ナ a- = a サ である。 セ -g(k) したがって, (*)より α = ヌ となり, f(x) は求められる。 である。 h(k) = 32 (2)次の等式を満たす 1次関数 f(x) を求めよう。 f(x)=xff(t)\dt-1 Solf (t) dt は正の定数であるから *f(t) dt = a(a>0) ソ の解答群 g(2) ①/-g(2) ②ん(2) ③ - h(2) テ の解答群 (*) とおくと, f(x) = ax-1 である。 また,f(x) = 0 を満たすxの値はである。 a ff(t) \dt について考える。 (数学II, 数学B, 数学C第3問は次ページに続く。) A 9 g (1)+(1/1) -(1/2)+(1/1) ® 29 (1) ⑧ 1 -9(1) G 92h (1) <-15-

解決済み 回答数: 2
数学 高校生

2024本試験-5 イウについてなのですが、確かに問題文の初めで比は与えられているのですが、それをそのまま使っても良いのですか? 別の線だから、比は同じでも元の長さは違うからとか考えなくてもいいのですか? 2枚目以降の写真は別の問題なのですが、この時、比をそのまま使っては... 続きを読む

第3問~第5問は、いずれか2問を選択し、解答しなさい。 28・15 200表示さ 第5問 (選択問題(配点 20 図1のように, 平面上に5点A, B, C. D, E があり, 線分AC, CE, EB, ED. DAによって、星形の図形ができるときを考える。 線分ACとBEの交際 P.ACとBD の交点をQ, BD と CEの交点をR, BE の交点をT とする。 CEの交点をDとCEの文 A11 E 10 ここでは B R × 図 1 TAT (1) AQD 直線 CE に着目すると 2024年度 本試験 数学Ⅰ・数学A 29 =SEとな AP 22/13 ANE E SET QR DS =1 Q RD SA CQ 3 AD と R が成り立つのでの水 (1) と表示され 同じものを選んでもよい QR: RD イ: 3 ** DA JE R となる。 また, △AQD と直線BE に着目すると #00 0801 =82 00 DAT QB: BD D エ : オリ ① 100 DA となる。 したがって編 BQ QR RD = エ : イ となることがわかる。 ア の解答群 AP:PQ:QC=2:3:3, AT : TS: SD = 1:1:3 AC ① AP ②AQ (3 CP を満たす星形の図形を考える。 以下の問題において比を解答する場合は, 最も簡単な整数の比で答えよ。 (数学Ⅰ・数学A第5問は次ページに続く。) 問3A学1年) 土 X DX .0 e ④PQ (数学Ⅰ・数学A 第5問は次ページに続く

解決済み 回答数: 1