学年

教科

質問の種類

数学 高校生

285番の解答の赤線部について、点Hの極座標が(1,π/3)というところからなぜ突然極方程式が求められるのかがわかりません。どのような過程があるのでしょうか

B問題 285 (1) * 点A(2,0)を通り, 始線とのなす角が 5 極座標に関して,次の直線の極方程式を求めよ。 (4) ①をx2+y2-4x=0 に代入すると recos20 +12sin204rcos0=0 すなわち よって (cos20 + sin20)-4rcos0= 0 rr-4cos0)=0 したがって r = 0 または r=4cose = 0 は極を表す。 また, r=4cose は極座標が (20) である点を中心とし, 半径2の円を表 す。 これは極を通る。 よって, 求める極方程式は r=4cose 別解 (4) 方程式を変形すると (x−2)2+y2=4 この方程式が表す円の半径は2で,中心の極座 標は (2,0)である。 よって, 求める極方程式は r=4cos0 283 曲線上の点P(r, 0) の直交座標を(x, y) とす ると rcos0=x, rsin0=y, r2=x2+y2 ...... (1) 極方程式v=cos0+sin0 の両辺にrを掛け ると r2=rcos0+sin 0 ) すなわち re=rcos0+rsin0 これに.① を代入して1, 0 を消去すると x2+y2=x+y x2+y²-x-y=0 よって 参考 +nz 曲線r= cos0 + sin0は極 (01/27) (nは整数) を通るから, y = cos0+sin の両辺 にを掛けても同値である。 (2) cos20 = cos20 sin' 0 から y2(cos20-sin20)=-1 すなわち (rcos0)-(rsin0)=-1 これに ① を代入して, 0 を消去すると x²-y²=-1 ↑ の直線 したがって 4(x2+y^2)=x2+6x+9 284 放物線上の点P の極座標を(r, 0) と し, Pから準線ℓに 下ろした垂線を PH とすると Y= 285 (1) 極0からこの 直線に下ろした垂線を OH とする。 右の図か ∠AOH= 3x²+4y²-6x-9=0 OP= PH ここで, OP=r, PH=3-rcos であるから r=3-rcos 8 よって, 求める放物線の極方程式は 3 1+ cos 20 2 IC 3 TC 6 解答編 = O 0 (2) 極0からこの直線に 下ろした垂線を OH, 直線と始線の交点を P OH-OAcos-2.1/28-1 =1 よって, 点Hの極座標は 1, したがって、求める極方程式は rcos (0-3)=1 B(1.4) H A l -69 X

回答募集中 回答数: 0
数学 高校生

(2)PQ²=のとこの式がどういう考え方をしているか分からないので教えて下さい!

97 双曲線となり再] [L] 考え方 直線とx軸正方向とのなす角は0であるから,この傾き 解答 (1) l の方程式はy=(x-1) tan0 だか これをCの方程式に代入すると 2x²-2(x-1)*tan²0=1 tandt (t = 0, ±1) とおいて整理して in 2(1-1²)x²+4tx=(1+2+³)=0 ①の判別式をDとすると D -=(21²)²-2(1-t²){−(1+2t²)} = 2(1+t²) >0 4 よって, ① は異なる2つの実数解をもつから 直線は双曲線 Cと相異なる2点で交わる。 (証終) (2) ①の2つの解をα, β とすると, 解と係数の関係から a+β=- aß=-- 2t² 1-² この傾きはf(=tan) であるから」 mimimi PQ2=(1+t)(a-B)^²=(1+t){(α+B)-4aB} =20 22 =(1+(-12 ) +4.1+24 1+tan²0 \2 1-tan²0 2 cos2 20 (3) (2) から RS'= 核心は 1+2t² 2(1-1²) なす角か = 2 ココ!- Ò cos²20+ sin 20 PQ2 ++ + 2 2(1-t)] cos20 + sin20 \2 cos²0-sin³0 2 = cos³2 (0+) sin ²20 T ・① 2(1+1²)² (1-1²)² =1/1/2=(一定)(証終) 第10章 式と曲線 曲 第33匹 解答は158ページ 97 Lv.★★★ C を双曲線 2x2-2y2=1とする。 l, mを点 (1, 0) を通り, x軸とそれ れ0.0 +4の角をなす2直線とする。 ここではの整数倍でないとす (1) 直線1は双曲線 C と相異なる2点PQで交わることを示せ。 (2) PQ2, 0 を用いて表せ。 (3) 直線と曲線Cの交点をR, Sとするとき, (火) らない定数となることを示せ。 PO² + +42/ RS2 は0に (筑波) 98 Lv.★★★ 解答は159ページ 楕円+y^2=1上の点をP(3cosa, sina) (Osas)とし、原点O 点Pを結ぶ線分とx軸の正の部分のなす角を0とするとき、次の各問に よ ー (1) 線分 OP の長さが 3 以上になるの範囲を求めよ。 √5 (2) α-0の最大値を求めよ。 99 Lv.★★★ 座標平面上の楕円 +10=1 -=1 (a>b>0)について, 以下の問いに答えよ (1) x座標が小さい方の焦点Fを極とし, F からx軸の正の方向へ向かう 半直線を始線とする極座標 (r, 9) で表された楕円の極方程式 r = f(0) を求めよ。また、点Fを通る楕円の弦を AB とし,線分 FA および FB の長さをそれぞれ, B とするとき 11 の値は定数となること 群馬大 解答は160ページ .....................

回答募集中 回答数: 0
数学 高校生

(2)PQ²=のとこの式がどういう考え方をしているか分からないので教えて下さい!

97 双曲線となり用 考え方 直線とx軸正方向とのなす角は0であるから,この傾き 解答 (1) l の方程式はy=(x-1)tan0だか ら,これをCの方程式に代入すると 2x²-2(x-1)² tan²0 = 1 tan Qt (t = 0, ±1) とおいて整理して 2(1-t2)x2+4t2x- (1+2t) = 0 ①の判別式をDとすると D= (2+²)²2-2 (1-t²){-(1 + 2t²)} = 2(1 + t²) > 0 4 21² aβ= 1-t². この傾きは t(=tan) であるから」 よって, ① は異なる2つの実数解をもつから、直線は双曲線 Cと相異なる2点で交わる。 (証終) (2) ①の2つの解をα, β とすると, 解と係数の関係から 1+2t2 α+β=- 2(1-t²) _PQ2=(1+t)(a-B)2=(1+t){(a+β)²-4aß} 2(1-t)] = 2 (1+tan ²)² = 2(cos²0+ sin²0 ² \2 1-tan²0 A-sin20 2 cos220 22 \2 = 0+1"){(-2+²)* +4. 21+2²}-20+1² 答 G (3) (2)から, RS' = 回核心は ココ! なす角 2 cos¹2(0+5)= 4 1 1 cos220 PQ+= cos 20+ sin 20 PQ² RS2 2 2 11 2 sin ²20 0 なので G 1/12 (一定)(証終 F F H 第10章 式と曲線 第33回 97 Lv.★★) 解答は158ページ C を双曲線 2x2-2y2=1とする。 l,mを点 (10) を通り, x軸とそれ れ 0.0+匹の角をなす2直線とする。 ここで0はの整数倍でないとす CLOS 4 (1) 直線は双曲線 C と相異なる2点P, Qで交わることを示せ。 (2) PQ³ 2. を用いて表せ。 10 AN (3) 直線と曲線Cの交点をRSとするとき, らない定数となることを示せ。 98 Lv.★★★ 楕円 2 x² 曲 (1) 線分 OP の長さが 3 √5 (2) | α-0 の最大値を求めよ。 99 Lv.★★★ 座標平面上の楕円 解答は159ページ +y2=1上の点をP (3cosα, sinα) (0≦a≦ 2) (0≦a≦△)とし、原点O 32 + 点Pを結ぶ線分とx軸の正の部分のなす角を0とするとき,次の各問に答 えよ。 XORA y² 62 は42, + ・は0に (筑波) PQ² RS² の長さをそれぞれA, YB とするとき, 以上になる0の範囲を求めよ。 (群馬大 解答は160ページ・ a² =1 (a>b>0)について,以下の問いに答えよ (1)x座標が小さい方の焦点Fを極とし, F から x軸の正の方向へ向かう 半直線を始線とする極座標 (r, 9) で表された楕円の極方程式 r = f(0) を求めよ。 また, 点Fを通る楕円の弦を AB とし,線分 FAおよび FB 1 1 + rB の値は定数となること

回答募集中 回答数: 0