学年

教科

質問の種類

数学 高校生

不等号の下に=がどういう時に付くのかがよくわかりません

例題129 三角関数 0≦0 <2のとき、次の不等式を解け. (1) 2 sin 02-1 (8 (2) 2 cos > IS 解答 (1) 2sin≧-1 より, sin0= - 考え方 三角関数を含む不等式は,まず「=(イコール)」とおいて,方程式を解くとよい あとは、例題128 (p.253) と同様に考える. ここでは単位円を用いて考えてみる =! よって、 右の図より、 7 11 osos, r≤0<2n <2π 6 (3) tan0≥-√3 5 より、0, (2) 2 cos >√3 h, cos 0>. √√3 cos0= より 2 よって、 右の図より sin 02 11 17/11/1/2π TC 6 6 11 0≤0<n<0<2n 6' л≤0<2n √3 2 11 -π 匹 6'6 7.11 tan0=-√3より.8=12/21. 1/23 5 よって、 右の図より 37 π 2 2' 3 1 2 9 17 15 3 (3) tan O -1 T 11 6 例題129 をグラフで考えると次のようになる. (1) YA (2) YA y=sine /color] 「53 -1 -√3- 1 O .7 6 π 6、 -TC TC y=coso 12 0 ale=0.4 √√3 2 1x 12 上 x AX x **** -√3 「まず 「=」とおいて入 程式を解く. 直線y=-12 より上り 0≦0.2より、2を 含まないことに注意す る. まず「=」とおいて 程式を解く. 0キ 直線x= 11 1/7<0</20 <θ< √3 しない まず「=」とおいて 程式を解く. 傾きが-√3よりも大 きい. (3) YA T 3 三角関数を含む不等式は、 まず 「=(イコール)」 とおいて、方程 式を解くの増加に伴い, sin 0, cos 0, tan 0 の値はどのよう に変化するか単位円を用いて考える Bo 回単 2'2" に注意する. より πであること by=tand F

回答募集中 回答数: 0
数学 高校生

198.2 記述に問題はないですか??

00000 よ。 接点 (2,-2) する。 える ='(a)(x-a) xの接点は は接線の下 >0 では接 ある。 この 曲線を2つに かし、 基本例題198 法線の方程式 2 -x³. 5xについて 3本 曲線 y= 9 ASES PO (1) 曲線上の点(2, -1/24) における法線の方程式 HEDON (2) (1)で求めた法線と曲線の共有点のうち、点 次のものを求めよ。 の線の方程式を求 指針 (1) 曲線y=f(x) 上の点A(a, f(a)) における法線の方程式は Ablicy 1 y—ƒ(a)=¯¯ƒ'(a)(x—a) (2)(1) で求めた法線の方程式と曲線の方程式を連立させて, xの3次方程式を解く。 解答 5 (1) f(x)=2012-2123xとするとf(x)=1/3x-33 5 6-2p+ よって、点 (2, -1/24 ) における接線の傾きは ② から 42 これをif'(2)= ・・22. ne by f(2)=3.2²-3-1 5 -14) 以外の点の座標 9 p.308 基本事項 ② 8318+x5¹²x=x すなわちy=-x+- 4 9 MAUROOM ASOR (2) 求める共有点のx座標は、次の方程式のx=2 以外の実数 解である。 5 4 a = -1 (²²x²-²3²x = -x + 1² ピー 整理して x3-3x-2=0 よって (x-2)(x+1)=0x したがって,求める点のx座標は, x=-1であり,求める共 13\-d) 有点の座標は (-1,13) 練習 ③ 198 (1) 曲線上の点 (1, 1) における法線の方程式 曲線y=x3-3x²+2x+1について,次のものを求めよ。 00000 - 24 ABST ゆえに,法線の傾きは-1である。 法線の傾きをとすると したがって、求める法線の方程式は D=6} =³&t$$_m׃′(2)=−1 よって y−(−14)=-1·(x-2) »)S—t—gl_inl-(6 *??_m=_ƒ(2) YA O lfd y=f(x) A 法線 法線 接線(21) 接線 (2) (1)で求めた法線と曲線の共有点のうち, 点 (1, 1) 以外の点の座標 x D7564 x=2が1つの解となるから, 左辺は x-2 を因数にもつ。 x=-1は重解であるから, この法線は曲線の接線でも ある。 p.314 EX129 311 6章 35 接 線 で n) Exc 36

回答募集中 回答数: 0
数学 高校生

151. θはどこの角?と思ったのですがどこからこの場所(3.の解答の図の場所)であると分かるのですか?

236 43 030000 基本例題 151/3倍角の公式の利用 半径1の円に内接する正五角形 ABCDEの1辺の長さをαとし,0=2. 080057 (1) 等式 sin 30+ sin20 0 が成り立つことを証明せよ。 (2) cose の値を求めよ。 り (3) αの値を求めよ。 (4) 線分ACの長さを求めよ。 時間 最 p.233 基本事項 指針▷ (1) 30+20=2πであることに着目。なお, 0 を度数法で表すと 72°である。 (2) (1) の等式を2倍角・3倍角の公式を用いて変形すると (1) は (2) のヒント {0} COSOの2次方程式を導くことができる。 0<cos0 <1に注意して, その方程式を解く (3), (4) 余弦定理を利用する。 (4) では, (2) の方程式も利用するとよい。 解答 (1) 0から 50=2π このとき したがって (2) (1) の等式から sin 0 0 であるから, 両辺を sin0で割って 3-4sin20+2cos0= 0 3-4 (1-cos20) +2cos0=0 4cos20+2cos0-1=0 The ゆえに 整理して sin30=sin(2π-20)=-sin20 sin 30+sin 20=0 よって 3 sin 0-4 sin³ 0+2 sin 0 cos 0=0 0 <cos0 <1であるから (3) 円の中心を0とすると, △OAB において,余弦定理により AB²=OA²+OB²-20A OB cos 05(1-02005){( AC > 0 であるから AC= cos 0=1+√5 4 =12+12-2・1・1・ -1+√5-5-√5 4 a>0 であるから a=AB= (4) △OAC において, 余弦定理により AC2=OA2+OC2-20A・OC cos 20 30=2π-2050=30+20 5-√5 2 +2. −1+ 4 (*) =12+12-2・1・1・cos20=2-2(2cos20-1) =4-4cos20=4-(1-2cost)=3+2cos 2 -1+√5 (2) の(*)から。 5+√5 V 2 練習 11 ) 0=18° のとき, sin20 = cos30 が成り立つ 3倍角の公式 sin30=3sin0-4sin't 忘れたら, 30=28+0とし て, 加法定理と2倍角の 式から導く。 (3) BA (4) B C C 2751 a 1 1 0 D め ※加注 でに (1) 0=36°のとき, sin30= sin20 が成り立つことを示し, COS 36°の値を求め ある 次 sin co:

回答募集中 回答数: 0
数学 高校生

(2)が分かりません💦 学校ではここの解き方ではなく、傾きを使って解いていたんですが理解出来ませんでした😭 傾きを使った方法で教えて頂けませんか?🙇🏻‍♀️🙇🏻‍♀️

三角比を含む不等式の解法の100000 補充 例題 117 0°≧0≦180°のとき,次の不等式を満たすの範囲を求めよ。 √3 (1) cosA> (2) tan≧-1 2 CHART & SOLUTION 三角比を含む不等式の解法まずとおいた方程式を解く √3 2 まず (1) cose- (2) tan0=-1 を解く。 次に、下記の座標に注目して、 不等式を満たすの範囲を考える。 sin の不等式 半径1の半円上の点Pのy座標 COS の不等式・ 半径1の半円上の点Pのx座標 tan の不等式・ 直線 x=1 上の点のy座標 (2) tanについては, 090° であることに注意する。 解答 (1) 図において, cos0 はPのx座標 であるから、x座標が より 大きくなる0の範囲を求める。 √3 まず,cosθ=- を満たす0を 2 求めると 0=150° よって, 図から求める0の範囲は 0°≤0<150° (2) 図において, tan0は直線x=1 上の点Tのy座標で表されるから, 点Tのy座標が-1以上である の範囲を求める。 まず, tan0=1を満たす0を求 めると 0=135° よって, 図から求めるの範囲は 0°≤0<90°, 135°≤0≤180° P YA 150° √3 2 10 YA 1 O P T P 135° 1 11 x y OL x 基本112 (Px座標が より大きくなるのはP が半円周上で,直線 x=-1 より右側にあ 2 る場合。 すなわち母が 0°以上150° より小さい 場合。 (2) Ty座標が-1以上 になるようなPの存在範 囲を正確に求める。 tan 0 では0=90° である から 0° ≤0≤90° と90°に等号をつけない ように注意する。

回答募集中 回答数: 0
数学 高校生

高一数学Iの三角比の問題です。 解き方を教えてください!

9. 次の会話の空欄にあてはまる数を入れよ。ただし,43と44は、 それぞれ下の記号 (ア)~ (ウ)から選べ。 【知識・技能】 【思考・判断・表現】 【主体的な学習】 解答番号43~50 三角形の辺の長さの求め方について、先生と太一さん,千晴さんが話し合っています。 -- 先生: 教科書p.105 の例2や問3では,「2辺とその間の角の大きさ」がわかっている場合に、残りの辺の長さの求 め方を学習しました。 太一:はい、覚えています。 余弦定理に与えられた辺の長さや角度を代入して、残りの辺の長さを求めました。 先生:では, 「2辺とその間にはない1つの角の大きさ」がわかっている場合には,残りの辺の長さを求めることが できるでしょうか。 千晴: 私はできると思います。 教科書p.103 の例題1問2では,正弦定理を使って辺の長さを求めました。 先生:そうですね。 でも、そのときに与えられた条件は、 「1辺と2つの角の大きさでしたね。 次のような場合に, 同じように正弦定理を利用して辺の長さを求めることはできますか。 (問題) △ABCにおいて,a=7,b=8,4=60°であるとき,c を求めよ。 千晴 : うーん・・・・。 正弦定理を使うと, sinB の値は求まりますが,辺の長さを求める式は作れそうにありません。 先生:そうですね。 では, 余弦定理を使うとどうでしょうか。 千晴:余弦定理を使ってを求めるから,式「=43」を使うのかな。 でも, わかっているのは4の大きさだよね。 太一:じゃあ、4の大きさを利用できる式 「44」を使ってみたらどうかな。 先生:では, その式を使って解いてみてください。 途中で2次方程式が出てきますので、解き方を思い出しながら 考えてみましょう。 [解] 余弦定理により, 45=46+c²-2・46・ccos47° 43 この式を整理すると,48c+49=0 cについての2次方程式を解くと, (c-3) (c-50)=0 千晴:解けました。 の値は2つあるんですね。 太一:cが2つあるということは, 与えられた条件を満たす三角形は2通りあるということですか。 先生:その通りです。 実際に図をかいて確かめてみましょう。 (ア) 62+&-2bccosA (1) ²+a²-2cacosB 44 45 46 よって,c=3,50 47 48 () a²+b²-2abcosC 49 50

回答募集中 回答数: 0
数学 高校生

黄チャートの問題について質問です! 解説下部の蛍光ペンで引いた部分について、なぜ2<なのか教えていただきたいです。2‪√‬15が0<x<20の範囲内にあることを証明したいのはわかりますが、なぜここが2なのかわかりません。2‪√‬15は7と8の間にあるので17、それか、前の... 続きを読む

つよう 2次方程式の応用 基本例題 80 右の図のように,BC=20cm, AB=AC, ∠A=90° の三角形ABCがある。 辺AB, AC 上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き, その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm²となるとき,辺FG の長さを求めよ。 CHART & SOLUTION 文章題の解法 等しい関係の式で表しやすいように、変数を選ぶ 解答 FG = x とすると, 0 <FG <BC であるから 0<x<20 また, DF=BF=CG であるから 2DF=BC-FG DF= 20-x 2 長方形 DFGE の面積は よって ...... 20-x 2 ② 解が問題の条件に適するかどうかを吟味 FG = x として, 長方形 DFGE の面積をxで表す。そして、面積の式を 20 とおいた, xの2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 ゆえに 整理すると これを解いて •x=20 x2-20x+40=0 DF・FG= =10±2√15 ここで, 02√158 から B PRACTICE 902 D EF x=-(-10)±√(-10)2-1・40 よって,この解はいずれも①を満たす。 したがって FG=10±2√15 (cm) F 20-x ・x 10-8<10-2√15 <20, 2<10+2√15 <10+8 B A U=(5-3)(S-1 E D G C F E G 基本 66 定義域 會∠B=∠C=45°であるか ら, BDF, ACEG も直 角二等辺三角形。 ←解の吟味。 xの係数が偶数 → 26′型 3章 02/15=√60<√64=8 単位をつけ忘れないよう に。 9 2次方程式

回答募集中 回答数: 0