学年

教科

質問の種類

数学 高校生

やり方教えて欲しいです😭

学習した日 月日 ( 2次方程式 38 2次方程式の利用(1) 立宜野 項 18m, 横9mの長方形の花畑に 右の図のような同じ幅の道をつくり たい。 花畑の部分の面積を42m²に (目標 具体的な問題を2次方程式を利用して解くことができる。 9m- DOD DD> DDDD xm =0の解が3 -4)=0 ると、 2=0 5. a. D> するには,道の幅を何mにすればよ 8m いですか。 (1) 道の幅をxmとすると, 花畑の縦の 部分は (8-x) mと表すことができる。 横の長さを表す式を求めなさい。 xm 宜野湾市立嘉数中学校 基本事項 2次方程式を利用して問題を解 <手順 ①求めるものをェとおく。 ②数量間の関係をつかみ、2次 方程式を立てる。 ③ 2次方程式を解く。 ④求めた解が問題の答えに適し ているかどうかを確かめ, 答 えとする。 きは、そのわけも書く (2)面積が42m²ということから, xを求めるための方程式をつくりなさい。 問題に適していない解があると (3)(2)でつくった方程式を解いて道の幅を求めなさい。 道幅が8m以上になる ことはあり得ない。 練習② 縦が36m, 横が45mの長方形の土地に、 右の図のように、 縦, 横同じ幅の道路をつけて残りを畑にしたい, 畑の面積が 1540m²になるようにするには道路の幅を何mにすればよい ですか。 (1) 道の幅をxmとして縦と横の長さを表す式を作りなさい。 もうに 縦 m 横 (2)面積が1540m²ということから, 方程式を作りなさい。 36m xm -45m xm m 道路を確認 1 のように移動し ても畑の面積は変わらない。 (3)(2)の方程式を解き、 道路の幅を求めなさい。 もう! 練習3 1辺がxcmの正方形の縦の長さを4cm短くし, 横を2倍にすると, 面積が90cmになった。 もとの正方形の面積を求めなさい。 xcm xcm xcm 4cm 自己評価 (5) とても まあ, できた できた

回答募集中 回答数: 0
数学 高校生

解放2です。

基本例 点がF(3,0), F'(-3, 0)で点A(-4, 0) を通る楕円の方程式を求めよ。 p.585 基本事項 重要 149、 解法 1. 焦点の条件に注目。2つの焦点はx軸上にあり、かつ原点に関して対称であ あるから求める楕円の方程式は 1 (40) とおける。 焦点や長軸短軸についての条件に注目し, a, bの方程式を解く。 解法2. 楕円上の点をP(x, y) として、 楕円の定義 [PF+PF' = (一定)」に従い, 点 の軌跡を導く方針で求める。 |解法 1. 2点F(30) F'(-3, 0) が焦点であるから, 求 1焦点は2点 める楕円の方程式は 4-2 + 92 b2 ここで a2-b2=32 =1 (a>b>0) とおける。 A (-4, 0) は長軸の端点である から a=|-4|=4 y √7 (√a²-b², 0). (-√a²-6ª, 0) 焦点のx座標に注目。 y座標が0であるから, 楕円の頂点。 a b よって62=q-32=42-9=7 ゆえに、求める楕円の方程式は F' -3 0 3 4x ここではの値を求め なくても解決する。 x2y2 長軸 17 va2-62 =1 7 すなわち +2 =1 16 7 PがAに一致するとき? 解法 2. 楕円上の任意の点をP(x, y) とすると PF+PF'=AF+AF'=|3-(-4)|+|-3-(-4)|=8 <F, F′, A はx軸上の よって ゆえに √(x-3)2+y2+√(x+3)+y2=8 <PF+PF'=8 √(x-3)2+y2=8-√(x+3)2+y2 両辺を平方して整理すると 16√(x+3)2+y2=12x+64 両辺を4で割って, 更に平方すると 整理して 16(x2+6x+9+y2)=9x2+96x+256 7x2+16y2=112 よって、求める楕円の方程式は 16 7=1 ここでがなくな 次のような楕円の方程式を求めよ。 9 (1) 2点(20)(20) 焦点とし、この2点からの距離の和が6 (2)楕円 x2y2 3 5 =1と焦点が一致し、 短軸の長さが4 (3)長軸がx軸上,短軸がy軸上にあり、2点(-2.0) (1,2)を通る。 p.603

回答募集中 回答数: 0
数学 高校生

x+y+z=0の場合も考えないといけないのはなぜですか?

y+z=2 x 日本 例題 26 比例式の値 y z+x=x+y ①①①①① Z のとき、この式の値を求めよ。 基本25 CHART O OLUTION 比例式は=kとおく ...... ****** ・ x y+z_z+x_x+y=k とおくと 解答 等式の証明ではなく, ここでは比例式そのものの値を求める y 2 この3つの式からkの値を求める。 辺々を加えると, 共通因数 x+y+z が両辺 にできる。これを手がかりとして, x+y+zまたはkの値が求められる。 求め の値に対しては,(分母)≠0(x0,yキ0,z≠0) を忘れずに確認する。 分母は0でないから 2+x_x+y= y+z=xk, z+x=yk, x+y=zk xyz=0 _XT =k とおくと X y 2 xyz = 0x≠0 かつ y=0 かつz0 y+z=xk ①, z+x=yk ①+②+③ から 2(x+y+z)=(x+y+z)k ・・②, x+y=zk ③ よって ゆえに (-2) (x+y+z)=0 k=2 または x+y+z=0 [1] k=2 のとき x+y+zが0になる可 能性もあるから, 両辺を これで割ってはいけな ① ② ③ から y+z=2x ④,z+x=2y ****** ⑤ x+y=2z ****** ⑤から y-x=2x-2y よって ⑥ x=y これを⑥に代入すると x+x=2z よ よって x=z したがって x=y=z x=y=z かつ xyz ≠0 を満たす実数x, y, zの組は存在する。 [2] x+y+z=0 のとき y+z=-x _y+z=x=-1 よって k=1 x x [1], [2] から, 求める式の値は 2,1 INFORMATION 例えば x=y=z=1 例えば,x=3, y=- z=-2 など, xyz キ かつ x+y+z=0 を たす実数x, y, zの 存在する。 ①~③の左辺は,x,y,zの循環形 (x→y→z→x とおくと次の式が得られる) なっている。循環形の式は、上の解答のように,辺々を加えたり引いたりするとう くいくことが多い。 一般には, 連立方程式を解く要領で文字を減らすのが原則であ

未解決 回答数: 0
数学 高校生

どうしてa-1を消去するとダメなのでしょうか?

Think 例題 55 文字係数の方程式 a を定数とするとき, 次の方程式を解け. (1) ax²-(a+1)x+1=0 考え方 文字係数を含む方程式を解く問題. 平 **** (2) (a2-1)x2=a-1 p.68 の例題 29 文字係数の不等式と同様に考える. つまり, 見かけ上の最高次の項の 係数が0の場合とそうでない場合を分けて考える。 たとえば, (1) では, x2 の係数 αに着目すると, a=0 のとき, -x+1=0 となり, 1次方程式となる. a≠0 のとき, ax²-(a+1)x+1=0 の2次方程式を考える. 解答 (1) (i) a=0 のとき x2の係数が0のとき, もとの方程式は, -x+1=0 より x=1 x2の項がなくなるの (ii) α = 0 のとき ax2+(-a-1)x+1=0 で,xの1次方程式に なる. (x-1)(ax-1)=0 より 1 x=1, -1→ - a a a -1→ -1 よって, a=0 のとき, x=1 -a-1 a=0 のとき, x=1, a (2) (a-1)(a+1)x2=a-la-lを消しちゃダメ! (i) a=1 のとき もとの方程式は, 0⚫x2=0 このとき,xはすべての実数 (ii) α=-1のとき もとの方程式は, 0.x2=2 これを満たすxは存在しないので,解なし () αキ±1 のとき a2-10 から, 両辺を2-1で割って x²= 1 a+1 a=1のとき, xがど のような値であっても, 0.x=0 は成り立つ. a=−1 のとき, xに どのような値を入れて も.0.x=-2が成り 立たない. a-1 a²-1 a-1 (a+1)(a-1) α>−1 のとき, x=± 1 Va+1 =+ _va+I a+1 1 ->0より, a+1 a+1>0 よって, (込) -1 のとき,解なし a=1のとき,xはすべての実数つまり,α> 1 a≦-1 のとき,解なし -1<a<1,1<α のとき,x=Ya+1 2次方程式のズの係数が0かどうか (i) a=0 or (ii) a0 (x=( ) a+1 ) キ 0 に注意 株 ( )が0かどうか分からない =0 を解け . p.168 14 第 2 章

未解決 回答数: 1