学年

教科

質問の種類

数学 高校生

この問題自体は理解出来ているのですが書き込みを加えたところについて質問です。 rのn乗=Pのn乗のとき奇数の場合と偶数の場合でr=Pかr=±Pか決まる、という方程式(?)が前ページに乗っていたのですが、これを使えるのが実数の範囲でみたいなことを解説動画で言っていて(理解出来... 続きを読む

本 12 等比中項 00000 実数a, b, cはこの順で等比数列になり, c, a,bの順で等差数列になる。 C この積が27であるとき、 a, b, c の値を求めよ。 等比数列をなす3つの数の表し方には,次の3通りがある。 1 初項 α, 公比として a, ar, are と表す [類 成蹊大 〕 p.427 基本事項 基本4 (公比形) ②] 中央の項α, 公比rとしてar', a, ar と表す (対称形) 3 数列 a,b,cが等比数列⇔ b=ac を利用 (平均形) 等差数列をなす3つの数の表し方は,次の3通り (p.419 参照)。 ① 公差形 a, a+d, a+2d と表す ② 対称形 a-d, a, a+d と表す ③] 平均形 26=a+c を利用 数列 a, b, c が等比数列をなすから b2=ac 429 1 章 ② 等比数列 ・ズ b=-27 実数であるから b=-3 これを①,② に代入して これらからcを消去して 左辺を因数分解して ac=9.2a=c-3 2a2+3a-9=0 (a+3)(2a-3)=0 ① <3 平均形 b=ac を利用。 C. a b c の積が-27であるから ①③ に代入して 数列 c, a, b が等差数列をなすから 2a=c+b 2 abc=-27 ... ③ αはc, bの等差中項。 463=(-3)3 実数じゃない ときは? c2a+3 を ac=9 に代入。 3 これを解いて a=-3, ac=9に代入して 2 α=-3のときc=-3 3 よって (a, b, c) = (-3, -3, -3), a=1/2 のとき c=6 別解 数列 α, b,cが等比数列をなすから,公比をと公比形 a, ar, ar" と -3. 2 すると b=ar,c=ar2 a,b,cの積が27であるから abc=-27 よって a・arar2=-27 すなわち (ar)=-27 ゆえに ar=-3 b=ar=-3であるから ac=9 ① また、数列 c, a, b が等差数列をなすから 表す。 公差0 VATE 1 検討 2 対称形を用いる。 la=br-c=br とすると by '.b·br=-27 2a=c+b よって 2a=c-3 ② ①,② から, c を消去して 2a2+3a-9=0 よって 6=-27 ゆえに b=-3 以下,上の解答と同様に計算する。

解決済み 回答数: 1
数学 高校生

黒い線より下が分からないです。 赤の文字の<の2は何処からきて、上のx<3は何処にいきましたか?

よ。 よう 17 例題 17 | 不等式の整数解と定数の範囲 ★★★☆☆ aは定数とする。次の2つの不等式を同時に満たす整数が存在し、かつそれが自 然数のみになるとき, αの値の範囲を求めよ。 [ 広島工大 ] 5x+2a>4-x ② B -B 3x+5>5x-1 ①, 指針式で表された事柄を、 図に表すことができれば、視覚的に把握ができて わかりやすい。 連立不等式の問題であるから、まずそれぞれの不等式を解くと ①から x <3 D', -a+2 ②から x> 3 ②' 「同時に満たす整数が存在し、かつそれが自然数のみになる」 ためには,まず, ①'と②'に共通範囲がなければならない。 このことを、数直線上に図示し、その共通範囲にある整数が 自然数だけになるようなαの条件を考える。 CHART 図に表して考える (連立不等式) 不等式 解のまとめは 数直線」 解答 ①から -2x>-6 よって x<3 I' ②から 6x> -2a+4 -a+2 よって x> ② 3 49 -a+2 3 3 41次不等式 ( x ①,②を同時に満たす整数が存在するから, ①と②' に共 通範囲があって -a+2 13 その範囲に整数が存在し, かつそれが自然数のみとなるた めの条件は -a+2 3 よって 0≤-a+2<6 きょの したがって -2-a<4 すなわち -4 <a≦2 32 3 -a+2 といったく

解決済み 回答数: 1
数学 高校生

因数分解の問題で、cについて整理して下線部のような式にはどうすればなりますか? 計算方法を教えて下さい🙇‍♀️

2 因数分解/2次式・ つぎの式を因数分解せよ. (1) (a-b+c-1)(a-1)-bc (2) 2x2+5xy-12y2-2x+25y-12 (3)(x+2y) (x-y) +3y-1 (酪農学園大酪農、環境) (京都産大・生命) odel-Co SI-((東北学院大・文系) 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 の文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」 をすればよい。 (2)も, x, yの2次式の部分を因数分解すれば同様にできる(別解). 慣習 因数分解せよ,という問題では, 特に指示がない限り, 係数が有理数の範囲で因数分解する . ■解答 (1) まずcについて整理することにより, 与式={c(a-1)+(a-b-1) (a-1)}-bc 与式はαについては2次だが, 6 やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1) (a+c-1) (2) まずについて整理することにより, 5-2x²+(5y-2)x-(12y2-25y+12) =2x²+(5y-2)r-(3y-4) (4y-3) a={x+(4y-3)}{2x-(3y-4)}....... 3-4-25 × -3 ① 1 (4y-3) × 2-(3y-4) →5y-2

解決済み 回答数: 1