学年

教科

質問の種類

数学 高校生

68. 記述でこの問題を解く場合について質問です。 解答のように表を書くのが個人的にピンとこない (実際試験でこの問題を解くときに表を書こうとは思わない)のですが、私が考えたような(写真2枚目)原始的に数直線で考える解法の場合、どのような記述文にすればいいでしょうか??

108 重要 例題 68 高次不等式の解法 次の不等式を解け。 ただし, aは正の定数とする。 x3-(a+1)x²+(a−2)x+2a≦0 指針▷まず,不等式の左辺を因数分解する。 因数定理を利用してもよいが,この問題では、 次の文字αについて整理する方が早い。 (x-a)(x-B)(x-x)≧0の形に変形したら、後は各因数 x-α, x-β, x-yの符号を調べ て, (x-a)(x-β) (x-y) の符号を判定する。 なお,α, B, y に文字が含まれるときは,α, β, y の大小関係に注意する。 解答 不等式の左辺をα について整理すると (x-x2-2x)(x-x-2a≦0 x(x+1)(x-2)-(x+1)(x-2)a≦0 (x+1)(x-2)(x-a) ≤0 よって [1] 0<a<2のとき 右の表から, 解は x-1, a≦x≦2 [2] a=2のとき 不等式は (x+1)(x-2)2 ≤0 となり (x-2)2≧0であるから x-2=0 または x+1≧0 ゆえに, 解は x≦-1, x=2 [3] 2<αのとき 右の表から, 解は x≤-1, 2≤x≤a [1] ~ [3] から, 求める解は 0<a<2のとき x≦-1, a≦x≦2 a=2のとき x≦-1, x=2 2 <a のとき x≦-1, 2≦x≦a x x+1 x-a x-2 f(x) [1] f(x)=(x+1)(x-2)(x-a) -1 a 0 + + x x+1 x-2 - x-a f(x) - - *** - ◄x²-x²-2x - =x(x-x-2) =x(x+1)(x-2) - - 0 ... - 0 - - + -1 0 + [3] f(x)=(x+1)(x-2)(x-α) 0000 ... - - + 00 - 0 2 + 0 ... +|+|||| + + ++ - *** + + 2++00 1 0 0 I 0 + a + ++ + + +1:

回答募集中 回答数: 0
数学 高校生

高一の数1です 三角比の表を使う問題でこの三角比の表とはどういう意味なのでしょうか?謎の表を使って問題を解くのに違和感があって気になります

15° 16° 7° 8° 5° 0.1392 0.1564 0.1736 0.1908 11° 12° 0.2079 13° 0.2250 14° 0.2419 0.2588 0.2756 0.2924 0.3090 0.3256 0.3420 0.3584 0.3746 0.3907 0.4067 0.4226 0.4384 0.4540 0.4695 0.4848 0.5000 0.5150 0.5299 0.5446 0.5592 。 10 P 8° 9° 10° Tom's in toto sin 0.0000 0.0175 0.0349 0.0523 0.0698 0.0872 0.1045 0.1219 0.5736 0.5878 0.6018 0.6157 0.6293 0.6428 0.6561 0.6691 0.6820 0.6947 20.7071 cos 1.0000 0.9998 0.9994 0.9986 0.9976 0.9962 0.9945 0.9925 0.9903 0.9877 0.9848 0.9816 0.9781 0.9744 0.9703 0.9659 0.9613 0.9563 0.9511 0.9455 0.9397 0.9336 0.9272 0.9205 0.9135 0.9063 0.8988 0.8910 0.8829 0.8746 0.8660 0.8572 0.8480 0.8387 0.8290 0.8192 0.8090 0.7986 0.7880 0.7771 0.7660 0.7547 0.7431 0.7314 0.7193 20.7071 三角比の表 tan 8 0.0000 0.0175 0.0349 0.0524 0.0699 0.0875 0.1051 0.1228 0.1405 0.1584 0.1763 0.1944 0.2126 0.2309 0.2493 0.2679 0.2867 0.3057 0.3249 0.3443 0.3640 0.3839 0.4040 0.4245 0.4452 0.4663 0.4877 0.5095 0.5317 0.5543 0.5774 0.6009 0.6249 0.6494 0.6745 0.7002 0.7265 0.7536 0.7813 0.8098 0.8391 0.8693 0.9004 0.9325 0.9657 1.0000 0 sin 45° 46° 47° 48° 49° 50° 51 52° 53° 54° 55° 0.7660 0.7771 0.7880 0.7986 0.8090 0.8192 0.8290 0.8387 0.8480 0.8572 0.8660 0.8746 0.8829 63° 0.8910 64° 0.8988 65° 0.9063 66° 0.9135 67° 0.9205 68° 0.9272 69° 0.9336 70° 56° 57° 58° 59° 60° 61° 62° 71° 72° 73° 74° 75° 76° 77° 78° 79° 80° 0.7071 0.7193 0.7314 81° 82° 83° 84° 85° 86° 87° 88° 89° 90° 0.7431 0.7547 0.9397 0.9455 0.9511 0.9563 0.9613 0.9659 0.9703 0.9744 0.9781 0.9816 0.9848 0.9877 0.9903 0.9925 0.9945 0.9962 0.9976 0.9986 0.9994 0.9998 1.0000 cos 0.7071 0.6947 0.6820 0.6691 0.6561 0.6428 0.6293 0.6157 0.6018 0.5878 0.5736 0.5592 0.5446 0.5299 0.5150 0.5000 0.4848 0.4695 0.4540 0.4384 0.4226 0.4067 0.3907 0.3746 0.3584 0.3420 0.3256 0.3090 0.2924 0.2756 0.2588 0.2419 0.2250 0.2079 0.1908 0.1736 0.1564 0.1392 0.1219 0.1045 0.0872 0.0698 0.0523 0.0349 0.0175 0.0000 tan 1.0000 1.0355 1.0724 1.1106 1.1504 1.1918 1.2349 1.2799 1.3270 1.3764 1.4281 1.4826 1.5399 1.6003 1.6643 1.7321 1.8040 1.8807 1.9626 2.0503 2.1445 2.2460 2.3559 2.4751 2.6051 2.7475 2.9042 3.0777 3.2709 3.4874 3.7321 4.0108 4.3315 4.7046 5.1446 5.6713 6.3138 7.1154 8.1443 9.5144 11.4301 14.3007 19.0811 28.6363 57.2900 to 1 201

回答募集中 回答数: 0
数学 高校生

(2)がよく分からないんですが教えてください!🙇

(2) 次の問題について考えよう。 △ABCにおいて, BC=√2, ∠ABC=60° ∠ACB=45° とする。 辺ABの長さ, および sin <BAC の値を求めよ。 セ (1) 太郎さんは、この問題を解くために、次の構想を立てた。 c0760- 太郎さんの構想 ∠ABC, ∠ACBの大きさから,それぞれの対辺である辺 AC, ABの長さ の比の値を求める。 AC-AB+B=ABICBCo5 ABC AC AB COS ∠ABC= セである。 また, sin∠ABC= sin∠ACB= タであるから, 正弦定理により が成り立つ。 COS ∠ABC= である。 よって, AB=x とおくと, 余弦定理により チ チ 01/1/12 ① 6 2 ツ √6 ② 8:1/260 = ⑦ イディオム ト √2 A COS CABC- の解答群 (同じものを繰り返し選んでもよい。) 13²+C²-213C (2 2 x COSABC ²42 √6 2 - 28 - 1². B²+C² - 2Bc cosa -√2 (8 /6 3 √3 (4) 2 ⑨ /6 3 (数学Ⅰ・数学A 第1問は次ページに続く。) △ABH に着目すると AH= AH= (2) 花子さんは、この問題を解くために、次の構想を立てた 花子さんの構想 BCの長さを辺AB, ACの長さを用いて表す。 点Aから辺BCに引いた垂線と辺BCの交点をHとして,線分 AH 辺 が成り立つ。 ナ AC AB である。 また, BC=BH+CH により ⑤ BC= 2 AC であるから √3 2 ★ - AB= ネ である。 また チ ヌ AB+ ① 6 /6 sin ∠BAC= ネ ② 2 2 |AC ナム AB であり、△ACH に着目すると であることがわかる。 ただし, ヒト+ no--no UT へ3 一般に、三角方程式や後で学ぶ三角比を含む不等式を解くには、 のを利用する。 を用いた三角比の定義は次のようなものであった の解答群(同じものを繰り返し選んでもよい。) 16 2 ビ sino-y.cosx.tan02 (090°) (p.1671③) 象 180 のとき がって, A1, 0) 座標が... (3) 太郎さんの構想または花子さんの構想を用いることにより フェ - 29 - AH-AB 7 (3 数学Ⅰ・数学A 8 フ AC √6 3 AB √2 2 9 とする。 B ・AC √√3 5 OSKI (1) この2点存在する 半径1の円周上 なる点は、図の2 求めるのは、∠A 0-307 (2) 半径1の半円 となる 求めるのは、 4:1919 -15c51% 0- (3) 直線x=1 る点をTとす この半円の共 求める0は in 解答・ (1) (2) co (3) ta PRAC 20 (4 ん、花子さん を正しく理

回答募集中 回答数: 0