学年

教科

質問の種類

数学 高校生

(2)で固定する子供は4P1としなくていいのですか? (3)で波線のところがわからないです。 教えてください。

実力アップ問題 83 難易度 CHECK 1 CHECK 2 |大人4人, 子供4人がテーブルに着席するとき, 次の問いに答えよ。 CHECK 3 (1) 円形のテーブルに着席するとき,子供4人が並んで座る座り方は何 通りあるか。 (2) 円形のテーブルに着席するとき,子供4人が1人おきに座る座り方 は何通りあるか。 (3)正方形のテーブルの各辺に2人ずつ並んで着席するとき,座り方 は何通りあるか。 (関東学院大 * ) ヒント! (1),(2)の円順列では,特定の1人(または1組の集団)を固定して考 えるといいんだね。(3) は,円順列の応用問題だ。よく考えてみよう! (1) 右図に示すよう 【子供の並べ替え4! 通り に4人並んで座 る子供の集団を固 定して考えると, 固定 子 子 子供の並べ替え で4通り。 子 子 大 大 残りの大人の並 大 大 べ替えで, 大人の並べ替え 4! 通り 4!通り。 以上より,求める座り方の総数は, 4! × 4! = 24 × 24=576通り......(答) 子供の並べ替えで,3! 通り。 大人の並べ替えで, 4! 通り。 以上より,求める座り方の総数は, 3! x 4! = 6 × 24=144通り(答) (3) 一般に,8人が円形のテーブルに座 る座り方は,特定の1人のαを固定 して考える円順列より, (8-1)!=7!=5040通りとなる。 ここで、正方形のテーブルの各辺に2 人ずつ座る場合,下図のように固定す る特定の1人(a)の位置によって 21=2(通り)倍に増える。 固定 固定 固定 (2) 右図に示すよう 子 1人おきに座 る子供の内 特定 (+ (子) 子 の1人を固定して 考えると、残りの 子供と4人の大 人の席の位置が 決まるので, (+ 以上より、求める座り方の総数は, 2×5040=10080 通り

解決済み 回答数: 1
数学 高校生

(3)の問題です。解説をみたのですが、黄色の線を引いたところです! この4はどこから出できたのでしょうか?教えて欲しいです🙇‍♀️

重要 例題 33 同じものを含む円順列・じゅず順列 00000 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが1 個ある。 玉には,中心を通って穴が開いているとする。 (1)これらを1列に並べる方法は何通りあるか。合 (2)これらを円形に並べる方法は何通りあるか。 (3) これらの玉に糸を通して首輪を作る方法は何通りあるか。 CHART & THINKING 基本18, 重要 22 (2)円形に並べるときは,1つのものを固定の考え方が有効。固定した玉以外の並び方を 考えるとき,どの玉を固定するのがよいだろうか? (3)「首輪を作る」とあるから,直ちに じゅず順列=円順列 2 でよいだろうか? すべて異なるもの なら、じゅず順列で解決するが,ここで は,同じものを含むからうまくいかない。 その理由を右の図をもとに考えてみよう。 答 000 左右対称 裏返すと同じ人 0 OL 9! 9.8.7 -=252 (通り) 同じものを含む順列。 6!2! 2.1 (1) 1列に並べる方法は (2)透明な玉1個を固定して、残り8個を並べると考えて 8! 8・7 -=28(通り) 6!2! 2.1 (3)(2)の28通りのうち,図 [1] のように 4通り [1] 左右対称になるものは よって,図[2]のように左右対称でない 円順列は 19文の [2] 赤玉6個、黒玉2個を1 列に並べる場合の数。 inf. (2) について, 解答編 p.213 にすべてのパターン の図を掲載した。 左右対称 でないものは、裏返すと一 致するものがペアで現れる ことを確認できるので参照 してほしい。 307 1章 3 組合せ 28-424 (通り) この24通りの1つ1つに対して, 裏 返すと一致するものが他に必ず1つ ずつあるから,首輪の作り方は 24 4+ =16(通り) 2 PRACTICE 330 する これらを1列に並べる方法は の下にひもを通し、

解決済み 回答数: 1
数学 高校生

なんでこの問題ってpを使うんですか?pとcに使い方の区別があまり出来ないのでそこも教えてくださるとありがたいです、宜しくお願い致します🙇

Tombow 55 男子4人, 女子3人が次のように並ぶとき, 次の並び方は何通りあ るか。 (2) 女子どうしが隣り合わないように円形に並ぶ (1) 女子どうしが隣り合わないように1列に並ぶ ポイント 解答 男子(♂) a, b, c, d, 女子(♀) e,f,g とする。 (2) まず, 男子を円形に並べておいて、あとから女子をすき間に入れます。 (1) 男子を並べておいて、あとから女子をすき間と両端に入れます。 (1)① ♂4人を1 列に並べる ② このときにできる両端とすき その あと 間5か所に♀を1人ずつ入れる と順序立てて, 4! × 5P3=24×60=1440(通り) イメージ ① (2)① ♂4人を円 形に並べる その このときにできるすき間4か 所に♀を1人ずつ入れる あと と順序立てて, ①♂を並べて ② アイウエアオ ア~オの中からef.gを 入れる3か所を選ぶと ♀は隣り合わない ed ♂4人を円形に並べると 3!×4P3=6×24=144 (通り)← ①② すき間は4か所 できる (♀が隣り合わない)=(全体)-(♀が隣り合う) は間違いです。 正しくは (♀が隣り合わない)=(全体) (♀の少なくとも2人が隣り合う) つまり ①eとだけが隣り合う たとえば aefbdg c (全体) - ②eとgだけが隣り合う fとgだけが隣り合う たとえば cfegbda e,f,g の3人が隣り合う となります。 パターン55 〜が隣り合わない

解決済み 回答数: 1