学年

教科

質問の種類

数学 高校生

至急です💦学校で出された数Aのレポートです。 範囲は三角形の五心です。 理由の説明の仕方などがわからないです、、 どなたか解説お願いします🙇‍♀️ (マーカーは自分が書いてたものなので気にしないでください、)

三角形の傍心について 「数学A」の教科書には以下のように記述してある。 三角形の1つの頂点における内角の二等分線と,他の2つの頂点における外角の二等分線は1点で交わる。 △ABCにおいて, この交点は3つの頂角∠A, ∠B, ∠Cの内部に1つずつある。これらを, そ れぞれ I1, I2, I3 とする。 I を中心とし, I ] から BCに下ろした垂線を半 径とする円は、辺BC および辺AB, AC の延長 に接する。 この円を頂角∠Aの内部の傍接円, I を傍心という。 I2, I3 はそれぞれ頂角 ∠B, [ZCの内部の傍心である。 Is (2) キュウくんの結論は、偶然と必然のどちらか選びなさい。 B' U 10 lokal これを読み, タンちゃんとキュウくんは以下のような会話をしている。 タンちゃん 「線分IA, I2B, IsCが1点で交わっているけど,これってこの図に限った話で, 偶然なのかな。」 キュウくん 「線分11A, I2B, IsCは,それぞれ∠A, ∠B, ∠Cの2等分線だから、△ABCにおいて,その点は (①) になっているよ。 だから1点で交わるのは (偶然必然) ② だよ。」 タンちゃん 「なるほどね、ありがとう! じゃあ, I I2I3に着目しても, 1点で交わることが偶然かどうかがわかるのか な。」 V JENSTEY キュウくん 「図を見ると, I AI2が90度っぽいから,外心か垂心になりそう (③)な気がする。この点が外心か垂心かどち らかであることが言えたら1点で交わることが偶然かどうかわかるのになあ。」 タンちゃん 「どちらをいうにも, ∠IAI とかが90度かどうか説明する必要がありそうだね。」 (1) キュウくんの発言における ( 内に入る用語を答えなさい。 AN (3) キュウくんの予想は外心か垂心であった。 どちらであるのか考えよう。 ※証明でなくてもよい。 ① 教科書を参考に、 外心と垂心はどんな3直線の交点であるか書きなさい。 ②外心と垂心のどちらであるか予想し, その理由を図や式や言葉で説明しなさい。 ※証明でなくてもよい 予想: 垂心である

回答募集中 回答数: 0
数学 高校生

この問題で、延長線を使わなくてはいけない理由はなんですか?仮定で、△ABCの辺BCをAB:ACに内分するって言っているので、∠Aの二等分線⇒BP:PC=AB:ACが成り立つからAPは∠Aの二等分線である、という証明ではダメなのですか?

000 Sluts ABCの辺BC を AB : AC に内分する点をPとする。このとき, APは∠A の二等分線であることを証明せよ。 例題 72 角の二等分線の定理の逆 問題文の内容を式で表すと,次のようになる。 指針 p.448 基本事項 2 定理1(内角の二等分線の定理) の逆である。 BP: PC=AB: AC ⇒ APは∠Aの二等分線 ( ∠BAP=∠CAP) △ABCにおいて、辺BAの延長上に点D ACAD となるようにとる。 つまり, 線分の比に関する条件から, 角が等しいことを示すことになるが, 線分の比を 扱うときには,平行線を利用するとよい。 ∠Aの二等分線BP : PC=AB AC の証明 (p.448 解説)にならい, まず辺 BAのAを越える延長上に, AC=AD となるような点Dをとることから始める。 別解 ∠Aの二等分線と辺BCの交点をDとして, 2点P, D が一致することを示す。 なお、このような証明方法を同一法または一致法という。 p.453 における三角形の重心の証明でも同一法を用いている。 ゆえに SISAKOLA Camar BP:PC=AB:ACのとき, BP : PC=BA : AD から平行線と線分の比の性質 AP//DCを三角形の重心と の逆 ∠BAP=∠ADC ∠PAC=∠ACD ACAD から ∠ADC=∠ACD よって ∠BAP=∠PAC すなわち, APは∠Aの二等分線である。 別解 辺BC上の点Pが BP: PC=AB:AC B P AB:AC=BD:DC BP:PC=BD:DC DI を満たしているとする。 ∠Aの二等分線と辺BCの交点をDとすると, 内角の 二等分線の定理により TOP p.448 基本事項2 ② あ CHURCO AS IMAG ROCLAAS TÄ したがって, APは∠Aの二等分線である。 HOA B ONOTRE 平行線の同位角、錯角は それぞれ等しい。 MAS △ACD は二等辺三角形。 ①②から 6. FADLOWE よって,PとDは辺BCを同じ比に内分するから一致す 同一法 る。 DP C 451 GROMAE CÓRKA 704 が成り立つ。下の練 3章 3 1 三角形の辺の比、五心

回答募集中 回答数: 0
数学 高校生

この問題で、OA:AD=A+B: Cとなるのはなぜでしょうか。

68 00000 重要 例題 36 三角形の内心を表す複素数 異なる3点O(0),A(α), B(β) を頂点とする △OAB の内心をP(z) とする。 このときは次の等式を満たすことを示せ。 BRONEO A ゆえに よって 指針> 三角形の内心は,3つの内角の二等分線の交点である。 AD: DB = OA: OB=α: 6 解答 OA=|α|=a, OB=||= b, AB=|β-α|=c とおく。 また,∠AOB の二等分線と辺ABの 交点をD(w) とする。 すなわち 次の 「角の二等分線の定理」 (*)を利用し, ZOの二等分 線と辺AB の交点をD(w) として,wをα, β で表す。 (*) 右の図で OD が △OAB の ∠0 の二等分線 ⇒ AD: DB = OA: OB EO A 40.1 次に,OAD において,∠Aと二等分線 AP に注目する。 以上のことは,内心の位置ベクトルを求めるときの考え方とまったく同じである。 「改訂版 チャート式基礎からの数学ⅡI + B 」 p.422 参照。 ba+aß であるから a+b Pは∠OAB の二等分線とOD の交点であるから W= 2= タミ a+b a+b+c W= Bla+lalß R$ |a|+|B|+|B-α| ...... 検討 △ABCの内ふた土 OP:PD=OA: AD=α: (a+bc) = (a + b) : c OP: OD=(a+b): (a+b+c) a+b+c |Bla+\a\B |a|+|B|+|β-al A(a) ・a a+b bata a+b a = P(z) b D(w) bB(B) ROBADA (5) bataß O 絶対値が付いたままでは扱 いにくいので, a,b,c と SALL おいた。 SKOLAGD 角の二等分線の定理。 B これより,Pは線分 OD を (a+b):cに内分する点で あるから c.0+(a+b)w a+b+cz=a+b+c としてもよい。

回答募集中 回答数: 0
数学 高校生

この問題の(1)がよく分かりません。 なぜ、BD:DC=AB:ACになるのか教えてください🙇‍♂️ また、(線分比)=(三角形の2辺の比)とはどういう意味なのかも教えてくださると嬉しいです。 よろしくお願いいたします🙇‍♂️🙇‍♂️

28 OOO00 基本例題59 三角形の角の二等分線と比 (1) AB=3, BC=4, CA=6 である△ABC において, ZA の外角の二等分 線が直線 BC と交わる点をDとする。線分 BD の長さを求めよ。 (2) AB=4, BC=3, CA=2 である△ABC において,ZA およびその外角 の二等分線が直線 BC と交わる点を,それぞれD, Eとする。線分 DE の 長さを求めよ。 Ip.325 基本事項2 基本64 CHART lOLUTION 三角形の角の二等分線によってできる線分比 (線分比)=(三角形の2辺の比) 内角の二等分線による線分比 → 内分 外角の二等分線による線分比 → 外分 各辺の大小関係を,できるだけ正確に図にかいて考える。 1を中 の三角形 解答 (1) 点Dは辺BCを AB:AC に外分するから BD:DC=AB:AC AB:AC=1:2 であるから 人 =AB: AC=3:6 BD:DC=1:2 よって BD=BC=4 BD:DC=1:2から D B BD:BC=1:1 (2) 点Dは辺BC を AB:AC に内分するから BD:DC=AB:AC=2:1 AB:AC=4:2 ゆえに DC=, 1 っ×BC=1 2+1 また,点Eは辺BC を AB:AC に外分するから BE:EC=AB:AC=2:1 C ゆえに CE=BC=3 よって DE=DC+CE=1+3=4 B DC E

回答募集中 回答数: 0