学年

教科

質問の種類

数学 高校生

(2)π/2を代入しなくても③から恒等式で求めてもいいですか?

基本 例題 156 第2次導関数と等式 (1) y=log(1+cosx)" のとき, 等式y" +2e-x=0を証明せよ。 (2) y=euxsinx に対して, y" = ay + by' となるような定数a,bの値を求めよ 10) [(1) 信州大, (2) 駒澤大] 基本 155 指針 第2次導関数 y” を求めるには,まず導関数yを求める。 また, (1), (2) の等式はともに の恒等式である。 (1) y" を求めて証明したい式の左辺に代入する。 また,e-xで表すには、等式 elogp=pを利用する。 (2) y', y” を求めて与式に代入し, 数値代入法を用いる。 解答 (1) y=2log(1+cosx) であるから (1+cos x)' 1+cosx よって よって y'=2・ y" == 2{cosx(1+cosx)−sinx(−sinx)} +(1+cos x)² x£)aies 2 1+cosx 2(1+cosx) (1+cosx) また,=log(1+cosx) であるから 2 ゆえに 2e-2=2 y 1+cos x π 2 e2 y"+2e=¾=—— 2 また, x= 39 てもこれを解いて == 1+cos x 2sinx 1+cosx y"=ay+by' に ①, ② を代入して e2x ...... を代入して +A + (2)y'=2e²sinx+e2xcosx=e2x(2sinx+cosx) y"=2e²x (2 sinx+cosx)+e²x (2 cosx-sinx) =e2x(3sinx+4cosx) ① ゆえに ay+by'=ae²x sinx+be²x (2 sinx+cosx)) =`(²x) =e2x{(a+26)sinx+bcosx} ež=1+cos x 2 1+cos x ③はxの恒等式であるから, x=0を代入して 3e=e" (a+26) =0 【logMk=klogM なお,-1≦cosx≦1と (真数) > 0 から 1+cosx>0 [参考 (2) のy"=ay+by' ように、未知の関数の導 を含む等式を微分方程式 (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} ... ③ いう(詳しくは p.473 参照 4=b ③が恒等式③に ◄sin²x+cos²x=1 CHURO530 11 [elogp=を利用すると alog(1+cosx)=1+cosx logze REC (e²)' (2 sinx+cos x) +ex (2 sinx+cos.x)' 2 を代入しても成り a=-5, b=4 このとき (③の右辺)=e2x{(-5+2・4)sinx+4cosx}= (③の左辺) 逆の確認。 したがって a=-5, 6=4

回答募集中 回答数: 0
数学 高校生

数1A二次方程式の問題です。 これを解と係数の関係から解こうとしたのですが、解けませんでした。どうしてこれだと解けないのか教えてください。よろしくお願いします。

15 2次の解の/基本的法- +ar+b=0の2つの解a, Bが一2<a<3, -2<B<3を,(a, b)\ 7村1対応の違 (龍谷大·文系 S(x)=0の実数解を, y=ノ(r)のグラフと 軸との共有点のr座標と1 - とらえるという,視覚的な(グラフで考える)方法 である。ここで,y=/(r)のグラフの考察のポイントは, (例題 10の0°~2°をふまえ) が存在する領域を ab平面上に図示せよ。 *21?9+D+;"=(2)/ '2710-9+20" 本間は解の配置に関する典型的問題である. その基本的処理法は 解の配置 0°下に凸か上に凸か(本間の場合, 下に凸) ° 判別式の符号 2" 軸の位置 区間の端点での値 である。本間のように, 0'ははじめから分かっていることが多い。 リ=f(x)/ 『(r)=r"+ar+bとおくと, y=f(r)のグラフ とょ軸が-2くょく3の範囲に異なる2交点をもつ条 件を求めればよい。 f(x)%3D0の判別式をDとすると, その条件は, 次 のパ~3°がすべて成り立つことである。 韓0<(Z-) 介軸の位置2°を考えないと,例えは、 右図の場 合も含ま 8 れてしま う。 0 -2 Tf(-2)>0 -2<エ<3で 0<9}-;D=Q I 0<a 解をもたない 2° 軸について: -2<- f(3)>0 3° 端点について:f(-2)>0かつf(3)>0 -2 03 a? ->9 → I '2コ2 4 0<a 2…… >D>9- = 2 また、f(-2)=-2a+b+4, f(3)=3a+b+9であるから, b=2a-4とb=-3a-9の交点 介は(-1, -6) したがって,題意の条件は, ①~①が同時に成り立つ ことで,これを満たす(a, b) の範囲は右図の網目部 分のようになる (境界は含まない)。 *注 境界線は放物線と直線であるが, 放物線と直 線は接している。 一般に,2次方程式の解の配置の問題において, 境界線に現れる放物線と直線は接している(はずな) ので,それに注意して図示しよう。 ………… 6-08I<9 Cif 8.. トー27<9 →8 +9 ;a2 接する =9 例えば、b= とb=2a-4を 4 a? ー(2a-4)=0 合連立させると, 0 D b=2a-4 9- . a-8a+16=0 a=4(重解) 6-DE-=9- で確かに接している。 (いつも接 0=(レーD) することを説明するのは難しいの で省略するが,接することは憶え ておこう) 015 演習題(解答は p.60) 2次方程式+(2a-1)x+α'-3a-4=0が少なくとも1つっ正の解をもつような実数 の定数aの値の範囲を求めよ。 軸の位置か,2解の パターンで場合分け。 (信州大·工) SARASA OI

回答募集中 回答数: 0
数学 高校生

n=1を入れたらa1と一致したので言ってることはあってると思うのですが、答えの順番とかマイナスの位置はこれでも大丈夫ですか??

a=3, an+」=2an+3"+1 によって定められる数列 {an} の一般項を求めよ。 1 (n)に nが含まれない ようにするため, 漸化式の 両辺を qで割る。 564 基本 例題118 an+ュ=D pa,tg"型の漸化式 OOO0。 【信州大) 基本116 基本124,Y8、 2.0n+Lー(n)=- となり,nが含まれない。 9 g" an+1 q 指金 1 bn+1=2b。+ q q an 2 -=Db, とおくと bn+1=●b,+ Aの形 に帰着。 b.560 基本例題116と同様にして一般項 b, が求められる。 dn +▲の形を導き出す。 an+1 例題は,漸化式の両辺を3"+1 で割り, 37+1 3" CHART 漸化式 an+1=pa,+q"両辺を g"+1 で割る 解答 an+1=2an+3"+1 の両辺を 3"+1 で割ると 2 an +1 2an 37+1 2 an an+1 37+1 3 37 3 3" 2 bn+1= - bn+1 3 an+1 =bn+1 37+1 an = bn とおくと 3" これを変形すると bn+1-3=-(b-3) 特性方程式 2 α=a+1から a=3 3 また b」-3= a1 ー3= -3=-2 3 3 2 よって,数列{bnー3} は初項 -2, 公比号の等比数列で ゆえに -3-2() 2」カ-1 An n-1 bn-3=-2 3 2 3-21 0 =3"+1_3·2" n-1 したがって 43"-2 n-1 An =3-3リ-イ,2.27-1 3-イ 参考 an+1=2am+3"+1 の両辺を2"+1 で割ると an+1 27+1 an ニ 3 \n+1 2" 2 an -= bn とおき, 階差数列を利用して解く方法もある(解答編p.413 を参照)。 2"

回答募集中 回答数: 0