学年

教科

質問の種類

数学 高校生

判別式を用いる2変数関数の最大最小の問題はメジャーですか?tで置き換えて判別式で求める方法があまりしっくりきません。

重要 例題 1192変数関数の最大・最小 (4) 00000 実数x,yがx2+y2=2 を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。 また,そのときのx,yの値を求めよ。 [類 南山大] 基本98 指針 条件式は文字を減らす方針でいきたいが,条件式x2+y²=2から文字を減らしても, 2x+yはx,yについての1次式であるからうまくいかない。 そこで, 2.x+y=tとおき, これを条件式とみて文字を減らす。 計算しやすいように y=t-2x としてyを消去し, x+y2=2に代入すると x2+(t-2x)=2となり,xの2次方程式になる。 この方程式が実数解をもつ条件を利用すると,tのとりうる値の範囲が求められる。 実数解をもつ⇔D≧0の利用。 CHART 最大・最小=tとおいて, 実数解をもつ条件利用 解答 2x+y=tとおくと y=t-2x... ① これを x2+y2=2に代入すると 整理すると 5x²-4tx+t2-2=0...... ② このxについての2次方程式 ② が実数解をもつための条件は, ②の判別式をDとすると D≧0 ここで 2=(-2t)²-5(-2)=-(-10) 4 x2+(t-2x)=2 D≧0から t²-10≦0 これを解いて -√10 ≤t≤√10 t=±√10 のとき D = 0 で, ② は重解x=- t=±√10 のとき x=± したがって x= 2√10 5 x=1 2√10 5 2√10 5 '10 y= 5 y=- -4t 2.5 2t 2/4 をもつ。 5 √10 ① から y=± 5 (複号同順) √10 5 のとき最大値 10 のとき最小値-√10 参考 実数 a, b, x, y につ いて,次の不等式が成り立つ (コーシー・シュワルツの不 等式)。 (ax+by)³s(a+b) (x² + y²) [等号成立はay=bx] a=2, b=1 を代入すると (2x+y)=(2+12)(x2+y²) x2+y²=2 であるから (2x+y)^2≦10 よって -√10 ≤2x+y≤√/10 (等号成立はx=2yのとき) このようにして、左と同じ答 えを導くことができる。 187 3章 13 2次不等式

未解決 回答数: 1
数学 高校生

⑵の問題についてです 参考書の解答が分からなかったので自分なりに解いてみましたが、解答はこれでも合ってますか? 何も文章とか書いてないので、付け足した方がいいところなどがあったら教えて下さい よろしくお願いします

Condu VAGOAT-/ 114 重要 例題 68 定義域によって式が異なる関数 (2) 関数f(x) (0≦x≦4) を右のように定義すると き,次の関数のグラフをかけ。 (1) y=f(x) (2) y=f(f(x)) 解答 (1) グラフは 図 (1)。 (2f(x) (0≤ f(x) <2) (2) f(f(x))= [8-2f(x) (2≦f(x)≦4) X001 指針>定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2) f(f(x)) f(x)のxにf(x) を代入した式で, 0≦f(x)<2のとき 2f(x), (1) のグラフにおいて, f(x)<2となるxの範囲と, 2≦f(x) 4 となるxの範囲を見 極めて場合分けをする。 よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 1 1 T 1 1≦x<2のとき f(f(x))=8-2f(x)=8-2・2x=8-4x 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x)=4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x)=16-4x よって, グラフは図 ( 2 ) 。 (1) O 1 2 3 4 x (2) 4 f(x)={ 2≦f(x)≦4のとき 8-2f(x) 0 1234 x [参考] (2)のグラフは,式の意味を考える方法でかくこともできる。 [1] f(x) が2未満なら2倍する。 E 18-2x (2≦x [2] f(x) が2以上 4以下なら, 8から2倍を引く。 [右図で、黒の太線・細線部分がy=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお, f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学ⅢIで学ぶ)。 0000 ■変域ごとにグラフをかく。 (1) のグラフから, f(x)の 変域は YA 2 0 0≦x<1のとき 0≤ f(x) <2 1≦x≦3のとき 2≤ f(x) ≤4 3<x≦4のとき 0≦f(x)<2 また,1≦x≦3のとき f(x) の式は 1≦x<2なら f(x)=2x 2≦x≦3ならf(x)=8-2x のように,2を境にして式 が異なるため, (2) は左の解 答のような合計4通りの場 合分けが必要になってくる。 9 2 2倍する 8から2倍を 引く 2

回答募集中 回答数: 0