学年

教科

質問の種類

数学 高校生

高一数1 ☆の場合分けアイウで何をしてるかが分かりません!どういう場合分けなのかグラフで示して頂きたいです!よろしくお願いします🥲

4 (選択問題) (配点 20点) (1)5点 (2) 9点 (3)6点 kを定数とし、2つの関数 がある. f(x)=x2-z-6 g(x)=x2-kz+ 2k + 1 (1) 不等式 f(x) <0の解は2<x<3 である. (2) g(x) = 0 が異なる2つの実数解をもつようなんの値の範囲は である. k<4-2v5またはk>4+2V⑤ (3) g(x) = 0 が異なる2つの実数解をもち, そのうちの一方のみがf(x) <0 を満たすようなkの値 の範囲は である. 【解答】 5 k≤ または 10 4 (1)x2-z-6=(x+2)(x-3) より f(x) < 0 の解は 2<x<3 (2) (g(x)=x2-kz+2k+1=0が異なる2つの実数解をもつ条件は (判別式)>0が成り立つこと であるから k2 - 4(2k + 1) > 0 つまりk2 - 8k-4>0 よって、 求めるkの値の範囲は k<4-2√5k > 4+2√√5...(*) (3)k (*)を満たすときに放物線y=g(x) がx軸と2<x<3の範囲でただ一つの共有点をもつ ようなkの値の範囲を求めればよい. g ●¥324 4k +5, y- =-k+10であることに注意する. 5 (ア) g(-2) < 0 のとき g(3)>0 が条件であるからk<-- かつk10 より 5 4" (イ)g(-2) = 0 のときg(x)=x2+-- 3-2 4 5 k <-- 4 1 = (z+2)(4-3) であるからg(x)=0はæ= ☆ 条件を満たす解にもつ. 5 (ウ)g(-2) > 0 のとき g(3) < 0 が条件であるからk> かつ かつk 10 より 4 k > 10 以上より、 求めるkの値の範囲は k≤ VII 5 または10

解決済み 回答数: 1
数学 高校生

(2)をどうやって求めるか教えてください

6 次の図において、 △ABCは正三角形であり、点DはAC上にある。 また、四角形ADEFはひし形で あり、 AF // BC である。 辺DEと線分CF の交点をG とするとき、 次の問いに答えなさい。 (1) △ABD∽△EFG であることを以下のように証明した。 空欄に最も適するものを下の語群からそれぞれ選び、 番号で答えなさい。 ただし、 同じ文字の空欄には同じ ものが入る。 (証明) ABD と ACF において △ABCは正三角形であるから AB=AC 【語群】 (i) Z (ア) =∠ACB=60°・・・・・・(ii) 四角形ADEFはひし形であるから AD = AF・・・・・・ (iii) ZCAF= (イ) (iv) 仮定より、 AF // BCであるから B =∠CAF・・・・・・ (vi) <CAF = ∠ACB (錯角) ...... (v) (ii), (v)より、 ∠ (ア) (ウ) () F E (i), (), (vi)より、 がそれぞれ等しいから AABDAACF よって、 ∠ADB= ∠ (エ) (vii) △ABD と EFG において AF // DEより、 ∠ (エ) = ∠EGF (錯角) (viii) (vii), (viii)より、 ∠ADB= ∠EGF (ix) △ また、(iv), (vi)より、 ∠ (ア) =2 (イ) (x) (ix), (x)より、2組の角がそれぞれ等しいから AABDAEFG (証明終わり ) (ア) ① ADE ② BAD ③ ADB (イ)・・・・・・ ① AFG ② CDG ③ ADB ④ CAF ④FEG (ウ) ・・・・・・ ① 3組の辺 ② 2組の角 ③ 2組の辺とその間の角 ④ 1組の辺とその両端の角 (エ)・・・・・・ ① AFC ② CGD ③ CAF ④ BDC (2)AD:DC=4:3のとき、 BCD と △CDG の面積の比を、 最も簡単な整数で求めなさい。 49:12 -5-

解決済み 回答数: 1